Fundamental dynamic processes at the electronic contact interface, such as carrier injection and transport, become pivotal and significantly affect device performance. Time-resolved photoemission electron microscopy (TR-PEEM) with high spatiotemporal resolution provides unprecedented abilities of imaging the electron dynamics at the interface. Here, we implement TR-PEEM to investigate the electron dynamics at a coplanar metallic 1T′-MoTe2/semiconducting 2H-MoTe2 heterojunction. We find the non-equilibrium electrons in the 1 T′-MoTe2 possess higher energy than those in the 2H-MoTe2. The nonequilibrium photoelectrons collapse and relax to the lower energy levels in the order of picoseconds. The photoexcited electrons transfer from 1 T′-MoTe2 to 2H-MoTe2 with at a rate of ~0.8 × 1012 s−1 (as fast as 1.25 ps). These findings contribute to our understanding of the behavior of photoexcited electrons in heterojunctions and the design of in-plane optoelectronic devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.