As a large variety of intraocular lens (IOL) designs is commercially available in a growing market, selecting the best IOL for each patient has become a crucial task for a positive surgical outcome. Information about the measured or estimated performance of commercial lenses, as the through-focus modulation transfer function (TF-MTF) at a given frequency and pupil diameter, is routinely published. SimVis Gekko, a see-through simultaneous vision simulator based on temporal multiplexing, allows patients to experience the real world through different multifocal corrections prior to surgery. Implementing the maximum number of commercially available IOL designs into the portfolio of SimVis Gekko simulations is needed to provide a complete experience for the patients. We developed a new method to visually simulate IOL designs using temporal multiplexing, based only on publicly available information (mainly scientific literature or regulatory information), using the TF-MTF at 15cpd as input data to estimate the temporal coefficients that provide the best approximation to the real lens design. We validated the method with synthetic phase maps of equal area segmented bifocal and trifocal multifocal corrections for three pupil diameters of 3mm, 3.75mm and 4.5mm and applied it to three commercially available IOLs (trifocal or extended-depth-of-focus lenses). Through-focus visual acuity (TF-VA) curves were measured in seven patients using the SimVis simulations in the SimVis Gekko and matched, on average, the through-focus VA measurements in patients with implanted IOLs, reported in the scientific literature (on average logMAR RMS error=0.05, corresponding to less than 3 letters of visual acuity charts).
SimVis Gekko is a novel see-through binocular visual simulator that is based on liquid-membrane tunable lenses (TLs) projected onto the pupil of the eye using a twisted miniaturized 4-f system. Following a temporal multiplexing approach that introduces periodic defocus variations in optical power at 50Hz, the TL generates multifocal images on the retina of the observer, that look static. In this study, the image quality of different tentative designs of SimVis Gekko was evaluated for different optical powers. The full optical system of SimVis Gekko was computer simulated to get the spot size, prismatic shift, angular magnification, and field curvature up to 20° of field of view. An image quality bench was developed to capture and process images through the SimVis Gekko simulator. The system comprises a grayscale camera and a 19- mm focal-length lens with an adjustable diaphragm. A high-resolution screen was placed at one meter with two different targets: (1) a checkerboard, imaged through a 1-mm diaphragm, to measure optical quality, prismatic shift, magnification, and optical distortion; (2) a binary noise, imaged through a 5-mm diaphragm, used to measure the local field curvature and image quality. Images were obtained from 1 to 3D of the TL and automatically analyzed. Theoretical simulations and experimental measurements showed good agreement. Magnification and curvature were the major differences across designs. The last version measured was free of optical distortions with a central curvature-free area with high optical quality. The developed system could guide the assembly and fine adjustment of active afocal optical systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.