KEYWORDS: Data modeling, Sensors, Systems modeling, Information fusion, Data storage, Filtering (signal processing), Satellites, Analytics, Control systems, Motion models
Recent trends in artificial intelligence and machine learning (AI/ML), dynamic data driven application systems (DDDAS), and cloud computing provide opportunities for enhancing multidomain systems performance. The DDDAS framework utilizes models, measurements, and computation to enhance real-time sensing, performance, and analysis. One example the represents a multi-domain scenario is “fly-by-feel” avionics systems that can support autonomous operations. A "fly-by-feel" system measures the aerodynamic forces (wind, pressure, temperature) for physics-based adaptive flight control to increase maneuverability, safety and fuel efficiency. This paper presents a multidomain approach that identifies safe flight operation platform position needs from which models, data, and information are invoked for effective multidomain control. Concepts are presented to demonstrate the DDDAS approach for enhanced multi-domain coordination bringing together modeling (data at rest), control (data in motion) and command (data in use).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.