We present a scalable approach capable of manufacturing high-precision three-dimensional (3-D) GRIN nanocomposites based on multi-component bulk glass-ceramics where we spatially modulate the concentration of high refractive index nanocrystals within a glass matrix. Previously demonstrated in homogeneous thin films and bulk glasses containing large scale liquid-liquid phase separation, this work expands on our efforts to optimize processing protocols employing a near single-phase bulk glass starting material enabling true 3-D modification. Sub-bandgap laser exposure generates Pb-rich amorphous phases within a Ge-As-Pb-Se glass matrix, which undergo crystallization resulting in the formation of highindex nanocrystals upon controlled heat treatment. Nanocrystal density is modulated in both radial and axial geometries by the laser dose, providing spatially tailorable changes in index and dispersion.
We discuss several recent advances in the development of methodologies and techniques used to structurally and morphologically engineer chalcogenide (ChG) materials. We introduce two ChG patterning techniques both offering spatial resolution beyond the classical single-photon diffraction limit: multiphoton lithography and thermal scanning probe lithography (TSPL). The former was applied to produce nanoscale modifications in thermally deposited As2S3, and we realized gradient refractive index (GRIN) effective medium lens fabrication in multilayer As2S3-As2Se3 films with features as small as 120 nm using this approach. The GRIN lens was shown to be optically functional. ChG Ge-Sb-Se-Te (GSST) material was also explored for its potential as a phase-change material (PCM). We demonstrated nanoscale feature patterning using TSPL in PCMs with critical dimensions below 100 nm. In addition, new patterning methods, we also report solution processing of GSST PCMs as an alternative route for ChG film deposition. These new material processing and structuring techniques will offer new pathways for creating functional planar optical and photonic devices.
On-chip optical isolators constitute an essential building block for photonic integrated circuits. Monolithic magnetooptical isolators on silicon, while featuring unique benefits such as scalable integration and processing, fully passive operation, large dynamic range, and simple device architecture, had been limited by their far inferior performances compared to their bulk counterparts. Here we discuss our recent work combining garnet material development and isolator device design innovation, which leads to a monolithic optical isolator with an unprecedented low insertion loss of 3 dB and an isolation ratio up to 40 dB. To further overcome the bandwidth and polarization limitations, we demonstrated broadband optical isolators capable of operating for both TM and TE modes. These results open up exciting opportunities for scalable integration of nonreciprocal optical devices with chip-scale photonic circuits.
The dramatic optical property change of optical phase change materials (O-PCMs) between their amorphous and crystalline states potentially allows the realization of reconfigurable photonic devices with enhanced optical functionalities and low power consumption, such as reconfigurable optical components, optical switches and routers, and photonic memories. Conventional O-PCMs exhibit considerable optical losses, limiting their optical performance as well as application space. In this talk, we present the development of a new group of O-PCMs and their implementations in novel meta-optic devices. Ge-Sb-Se-Te (GSST), obtained by partially substituting Te with Se in traditional GST alloys, feature unprecedented broadband optical transparency covering the telecommunication bands to the LWIR. A drastic refractive index change between the amorphous and crystalline states of GSST is realized and the transition is non-volatile and reversible.
Optical metasurfaces consist of optically-thin, subwavelength meta-atom arrays which allow arbitrary manipulation of the wavefront of light. Capitalizing on the dramatically-enhanced optical performance of GSST, transparent and ultra-thin reconfigurable meta-optics in mid-infrared are demonstrated. In one example, GSST-based all-dielectric nano-antennae are used as the fundamental building blocks for meta-optic components. Tunable and switchable metasurface devices are developed, taking advantage of the materials phase changing properties.
The dramatic optical property change of optical phase change materials (O-PCMs) between their amorphous and crystalline states potentially allows the realization of reconfigurable photonics devices with low power consumption, such as optical switches and routers, reconfigurable meta-optics, displays, and photonic memories. However, conventional O-PCMs, such as VO2 and Ge2Sb2Te5, are inherently plagued by their excessive optical losses even in dielectric states, limiting their optical performance and hence application space. In this talk, we present the development of a new group of O-PCMs and their implementations in novel photonic devices. Ge-Sb-Se-Te (GSST), obtained by partially substituting Te with Se in traditional GST alloys, feature unprecedented broadband optical transparency covering the telecommunication bands to LWIR. Capitalizing on the dramatically-enhanced optical performance, novel non-volatile, reconfigurable on-chip photonics devices and architectures are demonstrated. GSST-integrated Si photonics based on the material innovation and novel “non-perturbative” designs exhibit significantly improved switching performance over state-of-the-art GST-based approaches. The technology is further scalable to realize non-blocking matrix switches with arbitrary network complexity, paving the path towards high performance reconfigurable photonics chips.
Novel optical materials capable of advanced functionality in the infrared will enable optical designs that can offer lightweight or small footprint solutions in both planar and bulk optical systems. UCF’s Glass Processing and Characterization Laboratory (GPCL) with our collaborators have been evaluating compositional design and processing protocols for both bulk and film strategies employing multi-component chalcogenide glasses (ChGs). These materials can be processed with broad compositional flexibility that allows tailoring of their transmission window, physical and optical properties, which allows them to be engineered for compatibility with other homogeneous amorphous or crystalline optical components. This paper reviews progress in forming ChG-based GRIN materials from diverse processing methodologies, including solution-derived ChG layers, poled ChGs with gradient compositional and surface reactivity behavior, nanocomposite bulk ChGs and glass ceramics, and meta-lens structures realized through multiphoton lithography (MPL).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.