Optical phased array (OPA) has been widely employed across various applications, including light detection and ranging. Nevertheless, OPA faces significant limitations, such as excessive power consumption, complex control systems, and challenging packaging formats, which hinder its further development. Focal plane arrays (FPAs) have garnered increasing attention due to their absence of these drawbacks. However, FPAs currently face a dilemma as their ranging performance fails to meet application requirements. To address this issue, this paper presents a novel structure featuring small-scale receiving array and high directional antenna design. Utilizing this chip, we showcase a scanning range of 5.98° and a coherent detection capability of 6 meters.
Optical phased array has great potential in the fields of light detection and ranging, free-space optical communication, laser imaging and biosensors due to their excellent characteristics such as all-solid-state structure, fast scanning speed, good stability, high resolution and low cost. According to the radar equation, the transmit power will directly determine the maximum ranging distance of optical phased arrays. Limited by nonlinear effects and damage threshold, it is difficult to further increase the input optical power of Si-based OPA above 30 dB. Therefore, fully utilizing the input optical power of OPA is an important issue in the research. In this paper, we demonstrate a novel three-layer silicon antenna for OPA, which consists of a upside grating layer, a waveguide layer and a downside grating layer from top to bottom. In the simulation, we found that the upward directivity of the antenna is greater than 60% in a large wavelength range of 1413 nm to 1875 nm. In addition, the maximum upward directivity of the antenna is 94.68% at 1599nm. The above result is beneficial to increase the output power of the phased array and eliminate the blind area in the field of view when the beam is scanned to the point of destructive interference. Overall, the above results show that the design proposed in this paper has great potential for application.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.