Silicon Pore Optics is the optic technology selected for the production of the hundreds of mirror modules that will comprise the European Space Agency’s NewAthena X-ray mirror assembly. Each mirror module starts from pristine silicon wafers that are taken through many physical, mechanical and chemical steps to produce the about 160 individual mirror plates that are needed for its construction. At each step in the production chain, data are used to tune the details of each process, and new data are collected to assess the quality of the output. In this paper we describe how the different pieces of data that become available during the production of the optics are brought together in a system of data bases and software pipelines that is meant to serve both the scientific and the production quality needs associated with such a large effort. A few examples will be described to illustrate the current status of these efforts.
The European Space Agency (ESA), cosine and its partners have been developing for 20 years the Silicon Pore Optics (SPO) technology. SPO enables the next generation of space x-ray telescopes, with increased sensitivity and resolution. NewAthena, the New Advanced Telescope for High Energy Astrophysics, has just been endorsed by ESA as one of its Lclass mission, to launch around 2037. NewAthena’s optic is modular and consists of up to 600 mirror modules that form together a ~2.5 m diameter X-ray mirror with a focal length of 12 m and an angular resolution of 9 arc-seconds half-energy width. The total polished mirror surface is ~300 m2, which will focus X-rays with an energy of about 0.3 – 10 keV onto two detectors, a wild-field imager (WFI) and an imaging spectrometer (XIFU). Building hundreds of such SPO mirror modules in a cost-efficient and timely manner is a formidable task and subject of a dedicated ESA technology development program.
We present in this paper the status of the optics production and illustrate not only recent X-ray results but also the progress made on the environmental testing, manufacturing and assembly aspects of SPO based optics.
Silicon pore optics (SPO) is a novel approach, which has been developed for the European Space Agency X-ray observatory Athena, to achieve high-performance X-ray mirrors at low cost and relatively short lead time. The light-weight optics are manufactured from silicon wafers using mass production semiconductor technology as well as custom fully automated robotic assembly systems. A fully automated 300 mm IBF machine is used to further improve the optics by correcting thickness inhomogeneities, achieve specific global gradients and reduce the initial surface roughness of the wafers. SPO is a versatile technology, as the design of the mirror plates can be optimized for various applications. Different optical designs such as Wolter, Kirkpatrick–Baez, Laue and X-ray interferometry can be realized for the low-energy X-ray to gamma-ray energy range.
Silicon Pore Optics (SPO) have been invented and developed to enable x-ray optics for space applications that require a combination of high angular resolution while being light-weight to allow achieving a large mirror surface area. In 2005, the SPO technology development was initiated by the European Space Agency (ESA) for a flagship x-ray telescope mission and is currently being planned as a baseline for the NewATHENA mission scheduled for launch in the 2030s. Its more than 2m diameter mirror will be segmented and comprises of 492 individual Silicon Pore Optics (SPO) grazing-angle imagers, called mirror modules. Arranged in concentric annuli and following a Wolter-Schwartzschild design, the mirror modules are made of several tens of primary-secondary mirror pairs, each mirror made of silicon, coated to increase the collective area of the system, and shaped to bring the incoming photons to a common focus in 12 m distance. The mission aims to deliver an angular resolution of better than nine arc-seconds (Half-energy width) and effective area of about 1.1 m2 at an energy of 1 keV. We present in this paper the status of the optics production and illustrate not only recent x-ray results but also the progress made on the environmental testing, manufacturing and assembly aspects of SPO based optics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.