KEYWORDS: Neodymium, Electroluminescent displays, Chemical species, Transparency, Nonlinear optics, Quantum memory, Systems modeling, Photonics, Quantum computing, Current controlled current source
We model frozen light stored as a spin wave via electromagnetically induced transparency quantum-memory techniques in a Bose-Einstein condensate. The joint evolution of the condensate and the frozen light is typically modeled using coupled Gross-Pitaevskii equations for the two atomic fields, but these equations are only valid in the mean-field limit. Even when the mean-field limit holds for the host condensate, coupling between the host and the spin wave component could lead to a breakdown of the mean-field approximation if the host fluctuations are large compared the mean-field value of the spin wave. We develop a theoretical framework for modeling the corrections to the mean-field theory of a two-component condensate. Our analysis commences with a full second-quantized Hamiltonian for a two-component condensate. The field operators are broken up into a mean-field and a quantum fluctuation component. The quantum fluctuations are truncated to lowest non-vanishing order. We find the transformation diagonalizing the second-quantized approximate Hamiltonian and show that it can be described using the solutions to a system of coupled differential equations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.