Water is a fundamental component of many biological systems. The ability to detect water therefore provides great insight into system functionality, particularly in the development of disease. In this work, the high interaction of terahertz radiation with water, paired with the dependence of the dynamics of water molecules with varying temperature, is utilised to monitor changes in the composition of bone tissue. Heterotopic ossification (HO) bone samples and deionised free water are measured using terahertz time-domain spectroscopy for varying environmental temperatures, for prospective use in disease diagnosis.
The realisation of hyperspectral terahertz imaging is a significant step towards understanding of the life sciences on all scales. A key to this understanding is the retrieval of dielectric properties from such images, a task which is plagued by experimental limitations, challenging the terahertz community for more than two decades. In this contribution, we propose a new combined retrieval methodology to overcome misalignments and Fabry-Pérot effects on the extraction of the dielectric properties of human bone samples through the combination of the Kramers-Kronig relations and Fabry-Pérot reflection modelling. Results extracted from ∼100 µm human bone slices composed largely of collagen are consistent with those measured for pristine collagen samples. This represents another stepping-stone towards the adoption of terahertz imaging into pre- and clinical practice.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.