Holographic tomography (HT) enables measurement of three-dimensional refractive index distribution of transparent micro-objects by merging information from multiple transmitted waves corresponding to various illumination directions. HT has proven its great potential in technical inspection and biomedical studies; nonetheless, its further progress is hindered by inability of the standard reconstruction algorithms to account for multiple scattering. This limitation has been recently addressed with a few novel reconstruction approaches. In those techniques the tomographic reconstruction is iteratively improved by minimizing discrepancy between the experimentally acquired transmitted fields uE(x,y) and the analogical data uq(x,y) obtained via numerical propagation of the incident beams through the current refractive index estimate nq(x,y,z). The accuracy of these multiple-scattering reconstruction methods depends primarily on two features: (1) the forward model that allows computing the transmitted fields uq; (2) the feedback mechanism that converts uE - uq discrepancy into the reconstruction upgrade nq+1=nq+Δnq+1. In our work, we address the first issue with the wave propagation method that represents a reasonable trade-off between accuracy and time of computation. The paper focuses primary on the second issue, i.e. the feedback mechanism, that considerably influences the performance of the multiple-scattering reconstruction methods. In our work, we cross-analyze two feedback solutions, i.e. the gradient descent and the forward backward method. The performance of these solutions is tested via numerical simulations on different types of samples: step-objects representing technical samples and gradient structures emulating biological specimens. Our study investigates accuracy of the reconstruction, time of computation as well as stability and flexibility of the feedback method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.