A new 100μm aperture, 920nm laser diode chip was developed to improve fiber coupling efficiency and reliability. These chips have been assembled into single-emitter and multi-emitter packages with 105μm diameter fiber-coupled output. The single-emitter package is rated for 12W operation, while the multi-emitter package is rated at 140W. Power conversion efficiency is 50%. Over one year of accelerated active life testing has been completed along with a suite of passive, environmental qualification tests. These pumps have been integrated into 2kW, 4kW, and 6kW fiber laser engines that demonstrate excellent brightness, efficiency, and sheet metal cutting quality and speed.
Hongbo Yu, Dahv A. Kliner, Kai-Hsiu Liao, Jeff Segall, Martin Muendel, James Morehead, Jane Shen, Matt Kutsuris, Johnny Luu, Justin Franke, Kelvin Nguyen, Dave Woods, Fred Vance, David Vecht, David Meng, Richard Duesterberg, Lei Xu, Jay Skidmore, Matthew Peters, Nicolas Guerin, James Guo, Jane Cheng, Jihua Du, Brad Johnson, Dongliang Yin, Allen Hsieh, Peter Cheng, Abdullah Demir, Jason Cai, Rupa Gurram, Kong-Weng Lee, Reddy Raju, Daniel Zou, Raman Srinivasan, Mandeep Saini, Laura Zavala, Victor Rossin, Erik Zucker, Hiroaki Ishiguro, Hiroshi Sako
We have demonstrated a monolithic (fully fused), 1.2-kW, Yb-doped fiber laser with near-single-mode beam quality.
This laser employs a new generation of high-brightness, fiber-coupled pump sources based on spatially multiplexed
single emitters, with each pump providing 100 W at 915 nm within 0.15 NA from a standard 105/125 μm fiber. The
fiber laser is end pumped through the high-reflector FBG using a 19:1 fused-fiber pump combiner, eliminating the need
for pump/signal combiners. The output wavelength is 1080 nm, with a linewidth of < 0.5 nm FWHM. A peak power of
1.5 kW was reached in modulated operation (1-ms pulse duration) with M2 < 1.2.
Results for a new compact 488 nm solid-state laser for biomedical applications are presented. The architecture is based
on a multi-longitudinal mode external cavity semiconductor laser with frequency doubling in a ridge waveguide fabricated in periodically poled MgO:LiNbO3. The diode and the waveguide packaging have been leveraged from telecom packaging technologies. This design enables built-in control electronics, low power consumption (≤ 2.5 W) and a footprint as small as 12.5 x 7 cm. Due to its fiber-based architecture, the laser has excellent beam quality, M2 <1.1. The laser is designed to enable two light delivery options: free-space and true fiber delivered output. Multi-longitudinal
mode operation and external doubling provide several advantages like low noise, internal modulation over a broad frequency range and variable output power. Current designs provide an output power of 20 mW, but laser has potential for higher power output.
A single laser diode bar design, based on the AlGaAs material system, has been developed for high power, high reliability operation at a variety of CW and QCW operating conditions. The bar has a cavity length of 750 micrometer and a fill factor of 40%. Typical CW operation has a threshold current of approximately 10A and a conversion efficiency of greater than 45% at 40W. A variety of lifetests have been conducted at both CW and QCW operating conditions from the same bar design. On- going 3000 hr CW operation at 45C and 40W shows an extrapolated median lifetime (20% current increase) of 16,500 hrs at 45C or approximately 50,000 hrs at 25C (with 0.45eV activation energy). On-going 3000 hr QCW operation at 60C/60W and 35C/100W, with a pulse width of 200 microseconds and a duty factor of 2%, shows a median lifetime of approximately 10 billion shots and approximately 5 billion shots, respectively. In addition to single bar operation, this bar design can be stacked in various 2-D configurations. A 4 bar linear stack operating at 160W CW and a 6 bar vertical stack operating at 240W CW have been developed with superior performance. Results for high duty and low duty QCW stacks will also be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.