The ESA mission Solar Orbiter was successfully launched in February 2020. The Photospheric and Helioseismic Imager (PHI) provides measurements of the photospheric solar magnetic field and line of sight velocities at high solar latitudes with high polarimetric accuracy. The required pointing precision is achieved by an image stabilisation system (ISS) that compensates for spacecraft jitter. The ISS consists of a high-speed correlation tracker camera (CTC) and a fast steerable tip-tilt mirror operated in closed loop. We will present the results of the calibration measurements and performance tests from ground measurements, during commissioning and science phase. In addition, the correlation tracker was used to directly measure the pointing stability of the satellite.
Mid-resolution Infrared Astronomical Spectrograph (MIRADAS) is a near-infrared multi-object echelle spectrograph for Gran Telescopio de Canarias. It selects targets from a 5-arc min field of view using up to 12 deployable probe arms with pick-off mirror optics. The focal plane where the probe arms move has a diameter around 250 mm. The specific geometry of the probe arms requires an optimized collision detection algorithm for the determination of the target assignment and the trajectories determination. We present the general polygonal chain intersection algorithm, which is used to detect the possible collisions and avoid them. It is a generalization of the Polygonal Chain Intersection algortihm, allowing to work with vertical segments, providing a solution for the intersection of any class of polygons. Its use has reduced the time required to detect the collisions between 3 and 4 times compared with a naive solution when used in MIRADAS.
The polarimetric and helioseismic imager instrument for the Solar Orbiter mission from the European Space Agency requires a high stability while capturing images, specially for the polarimetric ones. For this reason, an image stabilization system has been included in the instrument. It uses global motion estimation techniques to estimate the jitter in real time with subpixel resolution. Due to instrument requirements, the algorithm has to be implemented in a Xilinx Virtex-4QV field programmable gate array. The algorithm includes a 2-D paraboloid interpolation algorithm based on 2-D bisection. We describe the algorithm implementation and the tests that have been made to verify its performance. The jitter estimation has a mean error of 125 pixel of the correlation tracking camera. The paraboloid interpolation algorithm provides also better results in terms of resources and time required for the calculation (at least a 20% improvement in both cases) than those based on direct calculation.
The tip/tilt driver is part of the Polarimetric and Helioseismic Imager (PHI) instrument for the ESA Solar Orbiter (SO), which is scheduled to launch in 2017. PPHI captures polarimetric images from the Sun to better understand our nearest star, the Sun. The paper covers an analog amplifier design to drive capacitive solid state actuator such ass piezoelectric actuator. Due to their static and continuous operation, the actuator needs to be supplied by high-quality, low-frequency, high-voltage sinusoidal signals. The described circuit is an efficiency-improved Class-AB amplifier capable of recovering up to 60% of the charge stored in the actuator. The results obtained after the qualification model test demonstrate the feasibility of the circuit with the accomplishment of the requirements fixed by the scientific team.
The Polarimetric and Helioseismic Imager (PHI) instrument is part of the remote instruments for the ESA Solar Orbiter
(SO), which is scheduled to launch in 2017. PHI captures polarimetric images from the Sun to better understand our
nearest star, the Sun. A set of images is acquired with different polarizations, and afterwards is processed to extract the
Stokes parameters. As Stokes parameters require the subtraction of the image values, in order to get the desired quality it
is necessary to have good contrast in the image and very small displacements between them. As a result an Image
Stabilization System (ISS) is required. This paper is focused in the behavior and the main characteristics of this system.
This ISS is composed of a camera, a tip-tilt mirror and a control system. The camera is based on a STAR1000 sensor that
includes a 10 bits resolution high-speed Analog-to-Digital Converter (ADC). The control system includes a Correlation
Tracking (CT) algorithm that determines the necessary corrections. The tip-tilt mirror is moved based on this corrections
to minimize the effects of the spacecraft (S/C) drift and jitter with respect to the Sun. Due to its stringent requirements, a
system model has been developed in order to verify that the required parameters can be satisfied. The results show that
the ISS is feasible, although the margins are very small.
A very high precision Image Stabilization System has been designed for the Solar Orbiter mission. The different components that have been designed are the Correlation Tracking Camera (CTC), Tip-Tilt controller (TTC) and the system control in order to achieve the specified requirements. For the CTC, in order to achieve the required resolution of 12 bits and reduced power consumption, we used an external ADC. For the TTC, a special focus has been dedicated to a 55 V linear regulator in a QUASI-LDO configuration and a Tip-Tilt driver in a transconductance amplifier architecture. Results show that the full system reaches an attenuation of 1/10th of a pixel at 10Hz. The TTC provides a high voltage span, enough slew-rate and the needed stability levels.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.