RISTRETTO is the evolution of the original idea of coupling the VLT instruments SPHERE and ESPRESSO,1 aiming at High Dispersion Coronagraphy. RISTRETTO is a visitor instrument that should enable the characterization of the atmospheres of nearby exoplanets in reflected light, by using the technique of high-contrast, high-resolution spectroscopy. Its goal is to observe Prox Cen b and other planets placed at about 35mas from their star, i.e. 2λ/D at λ=750nm. The instrument is composed of an extreme adaptive optics, a coronagraphic Integral Field Unit, and a diffraction-limited spectrograph (R=140.000, λ =620-840 nm).
We present the status of our studies regarding the coronagraphic IFU and the XAO system. The first in particular is based on a modified version of the PIAA apodizer, allowing nulling on the first diffraction ring. Our proposed design has the potential to reach ≥ 50% coupling and ≤ 10−4 contrast at 2λ/D in median seeing conditions.
The RISTRETTO instrument is a high-contrast high-resolution integral field spectrograph, designed to observe and characterize nearby exoplanets located at 2 lambda/D from their host stars. RISTRETTO’s spectrograph will be fed by a high-contrast IFU consisting of 7 single-mode fiber (SMF) spaxels. In this context, the coronagraph is specified to provide at least 10-4 raw contrast at 2 l/D across the I-band. Two coronagraph designs are presented: (i) an amplitude ring-apodizer mask, and (ii) a PIAA-derived solution with improved throughput. Simulations including realistic XAO residuals and early laboratory results are shown. The foreseen SMF injection unit design is also detailed.
RISTRETTO is a visible high-resolution spectrograph fed by an extreme adaptive optics (AO) system, to be proposed as a visitor instrument on ESO VLT. The main science goal of RISTRETTO is the detection and atmospheric characterisation of exoplanets in reflected light, in particular the temperate rocky planet Proxima b. RISTRETTO will be able to measure albedos and detect atmospheric features in a number of exoplanets orbiting nearby stars for the first time. It will do so by combining a high-contrast AO system working at the diffraction limit of the telescope to a high-resolution spectrograph, via a 7-spaxel integral-field unit (IFU) feeding single-mode fibers. Further science cases for RISTRETTO include the study of accreting protoplanets such as PDS70b/c through spectrally-resolved H-alpha emission, and spatially-resolved studies of Solar System objects such as icy moons and the ice giants Uranus and Neptune. The project is in an advanced design phase for the spectrograph and IFU/fiber-link sub-systems, and a preliminary design phase for the AO front-end. Construction of the spectrograph and IFU/fiber-link will start early 2022. RISTRETTO is a pathfinder instrument in view of similar developments at the ELT, in particular the SCAO-IFU mode of ELT-HIRES and the future ELT-PCS instrument.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.