Integration of heterogeneous data from different modalities such as genomics and radiomics is a growing area of research expected to generate better prediction of clinical outcomes in comparison with single modality approaches. To date radiogenomics studies have focused primarily on investigating correlations between genomic and radiomic features, or selection of salient features to determine clinical tumor phenotype. In this study, we designed deep neural networks (DNN), which combine both radiomic and genomic features to predict pathological stage and molecular receptor status of invasive breast cancer patients. Utilizing imaging data from The Cancer Imaging Archive (TCIA) and gene expression data from The Cancer Genome Atlas (TCGA), we evaluated the predictive power of Convolutional Neural Networks (CNN). Overall, results suggest superior performance on CNNs leveraging radiogenomics in comparison with CNNs trained on single modality data sources.
Prior research has shown that physicians’ medical decisions can be influenced by sequential context, particularly in cases where successive stimuli exhibit similar characteristics when analyzing medical images. This type of systematic error is known to psychophysicists as sequential context effect as it indicates that judgments are influenced by features of and decisions about the preceding case in the sequence of examined cases, rather than being based solely on the peculiarities unique to the present case. We determine if radiologists experience some form of context bias, using screening mammography as the use case. To this end, we explore correlations between previous perceptual behavior and diagnostic decisions and current decisions. We hypothesize that a radiologist’s visual search pattern and diagnostic decisions in previous cases are predictive of the radiologist’s current diagnostic decisions. To test our hypothesis, we tasked 10 radiologists of varied experience to conduct blind reviews of 100 four-view screening mammograms. Eye-tracking data and diagnostic decisions were collected from each radiologist under conditions mimicking clinical practice. Perceptual behavior was quantified using the fractal dimension of gaze scanpath, which was computed using the Minkowski–Bouligand box-counting method. To test the effect of previous behavior and decisions, we conducted a multifactor fixed-effects ANOVA. Further, to examine the predictive value of previous perceptual behavior and decisions, we trained and evaluated a predictive model for radiologists’ current diagnostic decisions. ANOVA tests showed that previous visual behavior, characterized by fractal analysis, previous diagnostic decisions, and image characteristics of previous cases are significant predictors of current diagnostic decisions. Additionally, predictive modeling of diagnostic decisions showed an overall improvement in prediction error when the model is trained on additional information about previous perceptual behavior and diagnostic decisions.
Our objective is to improve understanding of visuo-cognitive behavior in screening mammography under clinically equivalent experimental conditions. To this end, we examined pupillometric data, acquired using a head-mounted eye-tracking device, from 10 image readers (three breast-imaging radiologists and seven Radiology residents), and their corresponding diagnostic decisions for 100 screening mammograms. The corpus of mammograms comprised cases of varied pathology and breast parenchymal density. We investigated the relationship between pupillometric fluctuations, experienced by an image reader during mammographic screening, indicative of changes in mental workload, the pathological characteristics of a mammographic case, and the image readers’ diagnostic decision and overall task performance. To answer these questions, we extract features from pupillometric data, and additionally applied time series shapelet analysis to extract discriminative patterns in changes in pupil dilation. Our results show that pupillometric measures are adequate predictors of mammographic case pathology, and image readers’ diagnostic decision and performance with an average accuracy of 80%.
Several researchers have investigated radiologists’ visual scanning patterns with respect to features such as total time examining a case, time to initially hit true lesions, number of hits, etc. The purpose of this study was to examine the complexity of the radiologists’ visual scanning pattern when viewing 4-view mammographic cases, as they typically do in clinical practice. Gaze data were collected from 10 readers (3 breast imaging experts and 7 radiology residents) while reviewing 100 screening mammograms (24 normal, 26 benign, 50 malignant). The radiologists’ scanpaths across the 4 mammographic views were mapped to a single 2-D image plane. Then, fractal analysis was applied on the composite 4- view scanpaths. For each case, the complexity of each radiologist’s scanpath was measured using fractal dimension estimated with the box counting method. The association between the fractal dimension of the radiologists’ visual scanpath, case pathology, case density, and radiologist experience was evaluated using fixed effects ANOVA. ANOVA showed that the complexity of the radiologists’ visual search pattern in screening mammography is dependent on case specific attributes (breast parenchyma density and case pathology) as well as on reader attributes, namely experience level. Visual scanning patterns are significantly different for benign and malignant cases than for normal cases. There is also substantial inter-observer variability which cannot be explained only by experience level.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.