Silicon carbide’s material properties make it a desirable choice as a mirror substrate, particularly for space-based optical systems where thermal stability and low mass are critical. Mirror substrates made from silicon carbide (SiC) often have a small amount of porosity or surface features that make optical surfacing of the bare substrate challenging. To achieve the surface figure and roughness required for diffraction-limited performance at visible wavelengths, it is common to apply a thin layer, or cladding, of a similar material that has properties more conducive to optical surfacing. The introduction of another material, however, has the potential to change the surface figure over temperature, even with small differences in thermal expansion between the cladding and the substrate. This paper presents testing to characterize that effect on a SuperSiC®-SP mirror clad with chemical vapor deposited (CVD) silicon carbide produced by Entegris Specialty Materials. This mirror was fabricated for a two-axis gimbal-mounted scan mirror assembly, which has been developed for the QZSS-HP program. The QZSS-HP is a hosted payload (HP) on the Japanese Quasi-Zenith Satellite System (QZSS) and will be used for space domain awareness (SDA). Thermal expansion measurements and optical surface measurements performed at Massachusetts Institute of Technology Lincoln Laboratory (MIT LL) show that the difference in coefficient of thermal expansion (CTE) is on the order of 0.2 parts per million per degree C.
Silicon carbide structures fabricated by converting near-net-shape graphite preforms via Chemical Vapor Conversion (CVC) phase reaction have long provided improved performance components for electronics processing. In recent years, this same technology has been applied to the fabrication of simple and lightweighted mirrors and is moving into optical bench applications. To support the expanded applications, Poco has further evaluated the material properties of SUPERSiC® silicon carbide, developed technologies to mount silicon carbide mirrors on benches of similar and dissimilar materials, and fabricated complex monolithic geometries using in situ conversion bonding of mating graphite components. Overviews of each of these areas will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.