We fabricated Si nanopillar (NP) arrays using e-beam lithography and coated them with poly(3-hexylthiophene-2,5-diyl) (P3HT) organic semiconductor layers. Optical reflection spectra showed that Mie resonance significantly increased the scattering cross-sections of the NPs and strongly concentrated incident light in the NPs. Such concentrated light should produce numerous charge carriers and affect the subsequent drift/diffusion of the carriers. Surface photovoltage (SPV), defined as the difference of the surface potential in dark and under light, could reveal the formation and separation of the photo-generated carriers. Especially, Kelvin probe force microscopy technique allowed us to obtain real space SPV maps with nanoscopic spatial resolution. The SPV values at the NP tops were much larger than those at the flat regions around the NPs. This study would provide us insights into improving performance of organic/inorganic hybrid nanostructure-based devices.
In this work, we present the enhancement of ultraviolet (UV) photodetection of Ag-ZnO thin film deposited by radio frequency magnetron sputtering. The surface morphological, optical, structural, and electrical properties of the deposited thin films were investigated by various characterization techniques. With this Ag-ZnO thin film structure and proper geometry of metal–semiconductor–metal (MSM) interdigitated structure design, photocurrent enhancement has been accomplished. MSM-photodetectors (PDs) using structures of Ag-ZnO gave a 30 times higher magnitude photocurrent at 340 nm of the wavelength. Plasmon-induced hot electrons contributed to improved spectral response to the UV region, while absorption and scattering effect enhanced broadband improvement to a response in the VIS–IR spectrum range. The improvement of Ag-ZnO PD in comparison with ZnO is attributed to the surface plasmon effect using Ag nanodisks. These results indicate that Ag-ZnO thin films can serve as excellent ultraviolet-PD and a very promising candidate for practical applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.