We report on mid-infrared supercontinuum generation from 4 to 9 µm in orientation-patterned gallium-arsenide waveguides pumped by nanojoule-class ultrafast fiber lasers. The QPM waveguide and the laser source are optimized in tandem to pump the waveguides close to the degeneracy by means of sub-picosecond pulses at 2760 nm. The use of a waveguide geometry drastically reduces the required energy to the nanojoule level, thereby opening supercontinuum generation in GaAs platforms to fiber lasers.
Many applications such as nonlinear microscopy and strong field optoelectonics require high-energy (> 100 nJ) ultrashort (< 100 fs) pulses above 1.55 µm out of a singlemode fiber. Here, we report on high-energy amplification in tapered Er-doped fiber fabricated by the powder technique. The system based on direct amplification is free from stretcher and compressor units. We generate 90 fs MW-class pulses at 1600 nm by amplification and management of nonlinear effects in the tapered fiber. Despite the output 100 µm core diameter, the emitted beam is near-diffraction limited.
High-harmonics generation (HHG) in solids require high-energy few-cycle laser drivers at near- to mid-infrared wavelengths with excellent beam quality to reach fluences of ~1 TW/cm2. Along this line, soliton sources based on large mode area silica-core singlemode fibers produce ultrashort (70 fs) pulses at remote wavelengths with hundreds of nJ, thus providing a new platform for driving HHG in solids. In this communication, we explore the potential of such soliton-based fiber driver for HHG in thin-films of zinc oxide. The laser delivers 41 nJ 70 fs solitonic pulses at 1764 nm and drives harmonics generation up to H7.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.