In the present work, we propose a novel reference-less wavefront sensing method in a grating array-based wavefront sensor (GAWS). The proposed sensing method utilizes both +1 and -1 diffraction orders. The key idea is that when there is a local tilt in the wavefront, the array of +1 and -1 diffracted spots move in opposite directions due to their optical phase conjugate relationship but share a common reference position. By determining the displacement of these spots, the reference position can be precisely determined, and the local slope can be extracted from which the incident wavefront can be estimated. The proposed sensing method facilitates wavefront estimation using a single camera frame and is compatible with standard wavefront estimation algorithms. This proposed method proves particularly advantageous in scenarios where a highquality wavefront is unavailable as a reference. We have validated the effectiveness of our proposed method through simulation results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.