The Enhanced Resolution Imager and Spectrograph (ERIS) is the new near-infrared instrument at the VLT-UT4. ERIS replaces and extends the observational capabilities formerly provided by SINFONI and NACO: integral field spectroscopy at 1 to 2.5μm, imaging at 1 to 5μm with several options for high-contrast imaging, and long-slit spectroscopy. In particular, a vortex coronagraph is now available for high contrast observations at L and M band. It is implemented using annular groove (or vortex) phase masks (one for each of the L and M bands) in a focal plane, and a Lyot stop in a downstream pupil plane. The vortex coronagraph has a discovery space starting already at ∼1λ/D, and works well in broadbands. However, to reach its optimal performance, it is critical to correct for slow pointing errors onto the vortex phase mask, which mandates a dedicated pointing control strategy. To do so, a control loop based on the QACITS algorithm has been developed and commissioned for ERIS. Good pointing stability is now regularly achieved with errors between 0.01 and 0.02 λ/D and a correction rate of 0.2Hz. In this contribution, we first review the design of the ERIS vortex coronagraph. We then detail the implementation of the QACITS algorithm describing the entire observing sequence, including the calibration steps, the initial centering, and the stabilization during the observing template. We then discuss performance based on commissioning data in terms of pointing accuracy and stability. Finally, we present post-processed contrast curves obtained during commissioning and compare them with NACO vortex data, showing a significant improvement of about 1 mag at all separations.
ERIS (Enhanced Resolution Imager and Spectrograph) is a new adaptive optics instrument installed at the Cassegrain focus of the VLT-UT4 telescope at the Paranal Observatory in Chile. ERIS consists of two near infrared instruments: SPIFFIER, an integral field unit (IFU) spectrograph covering J to K bands, and NIX, an imager covering J to M bands. ERIS has an adaptive optics system able to work with both LGS and NGS. The Assembly Integration Verification (AIV) phase of ERIS at the Paranal Observatory was carried out starting in December 2021, followed by several commissioning runs in 2022. This contribution will describe the first preliminary results of the on-sky performance of ERIS during its commissioning and the future perspectives based on the preliminary scientific results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.