Microplastics are small plastic particles with a size of less than 5 millimeters from cosmetics or results of abrasion and decomposition of plastic waste. The tremendous marine pollution by plastic particles and fibers and their increasing presence in the human environment from drinking water reservoirs to waste water demands for an environmental management and effective detection methods. The uptake of microplastics by living organisms may cause injuries of the gastrointestinal tract, trigger inflammation or cause cell toxicity by intrinsic particle properties or adsorbed pollutants. Thus, there is an urgent need for methods to identify microplastics in the environment as well as its sources and associated risks. The German joint research project MicroPlastiCarrier focusses on the development of new technologies for the optical detection and identification of microplastic particles in wastewater. In order to monitor particle uptake minimally-invasively in living organisms and cellular specimens in a label-free manner, we applied high resolution optical coherence tomography (OCT) and phase tomographic approaches. Moreover, multi-spectral digital holographic microscopy (DHM) is combined with innovative microfluidics to quantify morphological particle properties and their refractive index signatures at different wavelengths. Our results demonstrate that label-free optical metrology, as provided by OCT, DHM and tomographic phase microscopy (TPM), forms a promising powerful multi-functional toolbox for quantitative imaging to identify and determine the influence and risks of microplastics in the environment.
Microplastics are small plastic particles the size of less than 5 millimeters from cosmetics or results of abrasion and decomposition of plastic waste. The tremendous marine pollution by plastic particles and fibers and the increasing presence in the human environment from drinking water reservoirs to waste water demands for an environmental management and effective detection methods. The uptake of microplastics by living organisms may cause injuries of the gastrointestinal tract, trigger inflammation or cause cell toxicity by intrinsic particle properties or adsorbed pollutants. The urgent need for methods to identify microplastics in the environment, its sources of input and the risk of microplastic particles is the objective of the research project MicroPlastiCarrier. The project develops new tools for the optical detection and identification of microplastic particles from wastewater by a multiwavelength approach. The multiple labelfree optical toolbox is based on digital holographic microscopy using wavelengths from the visible to mid infrared. In order to monitor particle uptake minimally-invasively in living organisms and cellular specimens in a label-free manner, we applied high resolution optical coherence tomography (OCT) and multi-spectral digital holographic microscopy (DHM). In combination with microfluidics technologies as flow cytometry the project plans to identify particles based on size and their absorption and refraction index properties at several wavelengths. The technology should overcome the limitations of state of the art FT-IR.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.