KEYWORDS: Temperature metrology, Diagnostics, Prototyping, Magnesium, Control systems, Microfluidics, Manufacturing, Sodium, Chemical reactions, Oxides
Many infectious diseases, as well as some cancers, that affect global health are most accurately diagnosed through
nucleic acid amplification and detection. There is a great need to simplify nucleic acid-based assay systems for use in
global health in low-resource settings as well as in settings that do not have convenient access to laboratory staff and
equipment such as doctors’ offices and home care settings.
In developing countries, unreliable electric power, inadequate supply chains, and lack of maintenance for complex
diagnostic instruments are all common infrastructure shortfalls. Many elements of instrument-free, disposable, nucleic
acid amplification assays have been demonstrated in recent years. However, the problem of instrument-free,1 low-cost,
temperature-controlled chemical heating remains unsolved. In this paper we present the current status and results of
work towards developing disposable, low-cost, temperature-controlled heaters designed to support isothermal nucleic
acid amplification assays that are integrated with a two-dimensional paper network. Our approach utilizes the heat
generated through exothermic chemical reactions and controls the heat through use of engineered phase change materials
to enable sustained temperatures required for nucleic acid amplification. By selecting appropriate exothermic and phase
change materials, temperatures can be controlled over a wide range, suitable for various isothermal amplification
methods, and maintained for over an hour at an accuracy of +/- 1°C.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.