A method of hybrid integration of quantum dot microdisk lasers with silicon wafer is proposed and realized. In addition to the possibility of combining microlasers with various silicon-based electronic and photonic devices, this makes it possible to significantly improve heat removal from the active region of the microlaser. The thermal resistance normalized to the mesa area reaches the level of about 0.002 (K/W)*cm2, which is significantly lower than the corresponding values of QD microlasers on GaAs substrate and monolithically grown on Si. As a result, the threshold current as well as current-induced shift of emission wavelength are reduced in continuous-wave regime.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.