KEYWORDS: Data modeling, Functional magnetic resonance imaging, Control systems, Magnetic resonance imaging, Feature extraction, Data conversion, Machine learning, Brain, Statistical modeling, Brain imaging
Recent progress in artificial intelligence provides researchers with a powerful set of machine learning tools for analyzing brain imaging data. In this work, we explore a variety of classification algorithms and functional network features derived from resting-state fMRI data collected from clinical high-risk (prodromal schizophrenia) patients and controls, trying to identify features predictive of conversion to psychosis among a subset of CHR patients. While there are many existing studies suggesting that functional network features can be highly discriminative of schizophrenia when analyzing fMRI of patients suffering from the disease vs controls, few studies attempt to explore a similar approach to actual prediction of future psychosis development ahead of time, in the prodromal stage. Our preliminary results demonstrate the potential of fMRI functional network features to predict the conversion to psychosis in CHR patients. However, given the high variance of our results across different classifiers and subsets of data, a more extensive empirical investigation is required to reach more robust conclusions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.