A plasmonic nanopore sensor enabling detection of bimodal optical and electrical molecular signatures was fabricated and tested for its ability to characterize low affinity ligand-receptor interactions. This plasmonic nanosensor uses a Self- Induced Back-Action (SIBA) mechanism for optical trapping to enable SIBA-Actuated Nanopore Electrophoresis (SANE) sensing through a nanopore located immediately below the optical trap volume. The ligand-receptor model consisted of a Natural Killer (NK) cell inhibitory receptor heterodimer molecule CD94/NKG2A that was synthesized to target a specific peptide-presenting Qa-1b Qdm ligand. The latter interaction pair was used as a simplified model of lowaffinity interactions between immune cells and peptide-presenting cancer cells that occur during cancer immunotherapy. A cancer-irrelevant GroEL ligand was also targeted by the same receptor in control experiments to test for non-specific interactions. Although the analysis of different pairs of bimodal SANE sensor signatures enabled some level of discrimination between specific and non-specific interactions the separation was not complete, which suggested the need for multi-dimensional data analyses in future work. Nevertheless, the SANE sensor showed ability to quantify the fast dissociation rate (koff) in this low-affinity model system that was previously shown to be challenging to quantify with commercial technologies. The koff value of targeted peptide-presenting ligands is known to correlate with the subsequent activation of immune cells in vivo, suggesting the potential utility of the SANE sensor as a screening tool in cancer immunotherapy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.