In this report we present the fabrication of III-nitride devices with nanoporous structure used as photoelectrodes for solar water splitting. Photoelectrochemical etching in a KOH solution of the GaN and InGaN/GaN devices at different concentrations and applied voltages has been employed to fabricate both planar and nanorod devices into nanoporous structures with controllable pore sizes. Photoluminescence measurements of the GaN and InGaN/GaN multi-quantum well (MQW) with nanoporous structures have shown an increase in intensity over the un-etched samples as a result of the release of the compressive strain which nitride samples grown on sapphire suffer. An enhancement in both photocurrent and hydrogen generation has been achieved across all samples with the nanoporous structure compared to their standard counterparts. Improved carrier extraction as a result of the enhanced surface area allows for better charge-transfer between the electrode and electrolyte. The significantly enhanced incident photon conversion efficiency (IPCE) of all nanoporous devices has been obtained.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.