Silicon is a ubiquitous material in electronics, yet its implementation in opto-electronic devices is significantly less prominent due to its underwhelming optical properties compared to other semiconducting materials. In this presentation, we discuss novel strategies for improving light absorption in silicon at the nanoscale. First, we show that the principle of photon confinement on the nanometer scale enables new transitions in silicon that are otherwise momentum-forbidden, providing a mechanism for absorption enhancement by several orders of magnitude. Second, we offer new approaches for enhancing two-photon absorption in silicon and show that such strategies can be used for rapid mid-infrared imaging with Si-based cameras.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.