Phase change materials (PCM) provide unique optical characteristics, such as a dramatic change in optical refractive index <1, not obtainable from conventional semiconductor optical materials such as Si and InP. Thus, PCMs are being explored to program and reconfigure optical devices to adapt to the sensing needs per the environment. Also, the nonvolatile nature of PCM devices offers system integration without disturbing the sensing. An example of a PCM-based optical device can be a spatial light modulator (SLM) that enables a coded aperture imaging technique to extract spectral signature for remote detection and identification without platform motion. SLMs offer a way to carry out spectral imaging with reconfigurability, which allows signature detection against a spectrally cluttered background. Here, we report on a new solid-state optical modulator device with a SbTe PCM operating in the infrared range and at cryogenic temperatures with excellent switching cycle reliability for the programming of PCM-based optical devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.