Characterization of quantum states and detectors is a key task in rapidly emerging optical quantum science and technology. First, we introduce and experimentally demonstrate a noise-robust quantum state characterization protocol using photon-number-resolving (PNR) measurements. Unlike conventional continuous variable state tomography methods, our method utilizes computationally efficient semi-definite programming (SDP) and can be used to accurately reconstruct the state even after loss a known loss. The protocol is demonstrated for a weak coherent state as well as a single-photon Fock state.
Next, we propose a method for characterizing a photodetector by directly reconstructing the Wigner functions of the detector’s Positive-Operator-Value-Measure (POVM) elements via weak-field homodyne technique. We also report our experimental progress on characterizing a superconducting transition-edge sensor for PNR measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.