Colorectal cancer (CRC) remains one of the leading causes of cancer deaths today. Since precancerous colorectal polyps slowly progress into cancer, screening methods are highly effective in reducing the overall mortality rate of CRC by removing them before developing into later stages. Virtual colonoscopy has been shown to be a practical screening method and provide a high sensitivity and specificity for diagnosis between hyperplastic polyps and precancerous adenomas or adenocarcinomas through the use of texture feature analysis. We hypothesize that effects from nonhyperplastic polyps, such as angiogenesis from adenocarcinomas, may result in changes to the texture of the colon wall that could help with computer aided diagnosis of the colorectal polyps. Here we present the preliminary results of incorporating the texture features of neighboring colon wall tissue into the diagnostic classification. We use gray level co-occurrence matrices to calculate the established Haralick features and a set of supplemental features for colorectal polyp regions of interest, as well as for the neighboring colon wall environment of the polyp. A random forest package was then used to perform the classification tests on different sets of features, with and without the inclusion of the environment to obtain an area under the curve (AUC) value of the receiver operating characteristic (ROC). Experiments show approximately a 1% increase in overall classification performance with the inclusion of the environment features.
We present crowdsourcing as an additional modality to aid radiologists in the diagnosis of lung cancer from clinical chest computed tomography (CT) scans. More specifically, a complete work flow is introduced which can help maximize the sensitivity of lung nodule detection by utilizing the collective intelligence of the crowd. We combine the concept of overlapping thin-slab maximum intensity projections (TS-MIPs) and cine viewing to render short videos that can be outsourced as an annotation task to the crowd. These videos are generated by linearly interpolating overlapping TS-MIPs of CT slices through the depth of each quadrant of a patient's lung. The resultant videos are outsourced to an online community of non-expert users who, after a brief tutorial, annotate suspected nodules in these video segments. Using our crowdsourcing work flow, we achieved a lung nodule detection sensitivity of over 90% for 20 patient CT datasets (containing 178 lung nodules with sizes between 1-30mm), and only 47 false positives from a total of 1021 annotations on nodules of all sizes (96% sensitivity for nodules>4mm). These results show that crowdsourcing can be a robust and scalable modality to aid radiologists in screening for lung cancer, directly or in combination with computer-aided detection (CAD) algorithms. For CAD algorithms, the presented work flow can provide highly accurate training data to overcome the high false-positive rate (per scan) problem. We also provide, for the first time, analysis on nodule size and position which can help improve CAD algorithms.
Virtual colonoscopy (VC) allows a radiologist to navigate through a 3D colon model reconstructed from a computed tomography scan of the abdomen, looking for polyps, the precursors of colon cancer. Polyps are seen as protrusions on the colon wall and haustral folds, visible in the VC y-through videos. A complete review of the colon surface requires full navigation from the rectum to the cecum in antegrade and retrograde directions, which is a tedious task that takes an average of 30 minutes. Crowdsourcing is a technique for non-expert users to perform certain tasks, such as image or video annotation. In this work, we use crowdsourcing for the examination of complete VC y-through videos for polyp annotation by non-experts. The motivation for this is to potentially help the radiologist reach a diagnosis in a shorter period of time, and provide a stronger confirmation of the eventual diagnosis. The crowdsourcing interface includes an interactive tool for the crowd to annotate suspected polyps in the video with an enclosing box. Using our work flow, we achieve an overall polyps-per-patient sensitivity of 87.88% (95.65% for polyps ≥5mm and 70% for polyps <5mm). We also demonstrate the efficacy and effectiveness of a non-expert user in detecting and annotating polyps and discuss their possibility in aiding radiologists in VC examinations.
Virtual colonoscopy (VC) allows a physician to virtually navigate within a reconstructed 3D colon model searching
for colorectal polyps. Though VC is widely recognized as a highly sensitive and specific test for identifying
polyps, one limitation is the reading time, which can take over 30 minutes per patient. Large amounts of the
colon are often devoid of polyps, and a way of identifying these polyp-free segments could be of valuable use in
reducing the required reading time for the interrogating radiologist. To this end, we have tested the ability of
the collective crowd intelligence of non-expert workers to identify polyp candidates and polyp-free regions. We
presented twenty short videos flying through a segment of a virtual colon to each worker, and the crowd was
asked to determine whether or not a possible polyp was observed within that video segment. We evaluated our
framework on Amazon Mechanical Turk and found that the crowd was able to achieve a sensitivity of 80.0% and
specificity of 86.5% in identifying video segments which contained a clinically proven polyp. Since each polyp
appeared in multiple consecutive segments, all polyps were in fact identified. Using the crowd results as a first
pass, 80% of the video segments could in theory be skipped by the radiologist, equating to a significant time
savings and enabling more VC examinations to be performed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.