KEYWORDS: Nanostructures, Silver, Amorphous silicon, Solar cells, Nanolithography, Thin film solar cells, Lithography, Nanoparticles, Scanning electron microscopy, Metals
We report on the fabrication and measurement of ultrathin a-Si solar cells with plasmonic back contacts composed of nanopattern dendritic/shrub-like Ag nanostructures that exhibit enhanced short circuit densities compared cells with flat back contacts. The morphology of the Ag nanostructure can be well controlled by the reaction time. When the proposed structure was used in the solar cell. The back-reflector of solar cell can be well designed by various Ag nanostructures and periods. A one-dimension shrub-like Ag nanostructure with spacing of 600 nm, exhibited a 14 % increase in short-circuit current density and a 20% increase in energy conversion efficiency are observed. This study indicates that the dendritic/shrub-like Ag nanostructure can be applied as a enhancing conversion configuration for ultrathin a-Si solar cells.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.