In this work, we report a fast and efficient in-situ growth method of Zinc-Oxide nanowires (ZnO-NWs) and the real-time monitoring of NW growth over wide microfluidic chambers. The ZnO-NW hydrothermal synthesis is carried out in dynamic mode involving a continuous flow of the growth solution inside the microfluidic chamber. The biomimetic flow distribution tree is designed as input and output stages for the chamber to ensure uniform distribution of growth solution flow aiming to produce uniform NWs on the wide chamber. The real time monitoring is achieved by continuous acquisition of UV-vis spectra of the ZnO-NWs during the growth, which is achieved for the first time to the best of the author’s knowledge.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.