Quantum entanglement has the potential to revolutionize the entire field of interferometric sensing by providing
many orders of magnitude improvement in interferometer sensitivity. The quantum-entangled particle interferometer
approach is very general and applies to many types of interferometers. In particular, without nonlocal
entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales
like 1/√N
N, where N is the number of particles passing through the interferometer per unit time. However, if
carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity
improves by a factor of √N
to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle.
For optical interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds
to an eight-order-of-magnitude improvement of signal to noise. This effect can translate into a tremendous science
pay-off for space missions. For example, one application of this new effect is to fiber optical gyroscopes
for deep-space inertial guidance and tests of General Relativity (Gravity Probe B). Another application is to
ground and orbiting optical interferometers for gravity wave detection, Laser Interferometer Gravity Observatory
(LIGO) and the European Laser Interferometer Space Antenna (LISA), respectively. Other applications are to
Satellite-to-Satellite laser Interferometry (SSI) proposed for the next generation Gravity Recovery And Climate
Experiment (GRACE II).
Quantum entanglement has the potential to revolutionize the entire field of interferometric sensing by providing many orders of magnitude improvement in interferometer sensitivity. The quantum entangled particle interferometer approach is very general and applies to many types of interferometers. In particular, without nonlocal entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales like 1/√N, where N is the number of particles passing through the interferometer per unit time. However, if carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity improves by a factor of √N to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle. For optical interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds to an eight-order-of-magnitude improvement of signal to noise. This effect can translate into a tremendous science pay-off for NASA-JPL missions. For example, one application of this new effect is to fiber optical gyroscopes for deep-space inertial guidance and tests of General Relativity (Gravity Probe B). Another application is to ground and orbiting optical interferometers for gravity wave detection, Laser Interferometer Gravity Observatory (LIGO) and the European Laser Interferometer Space Antenna (LISA), respectively. Other applications are to Satellite-to-Satellite laser Interferometry (SSI) proposed for the next generation Gravity Recovery And Climate Experiment (GRACE II).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.