This paper reports work on the development of rugged micro-electromechanical systems (MEMS)-based
microspectrometers for real-time applications in agriculture. The devices are electrostatically actuated, first order Fabry-
Perot tuneable optical filters, hybridised with InGaAs photodiode detectors. Tuning range and resolution of the devices
are 1615 nm to 2425 nm and 52 nm (FWHM) at 2000 nm, respectively. To our knowledge, this tuning range is the
largest reported for a MEMS-based Fabry-Perot filter. Three-layer distributed Bragg reflectors are used for the Fabry-
Perot mirrors, and consist of e-beam evaporated layers of germanium - silicon monoxide - germanium. The moveable
mirror also includes two silicon nitride layers that act as the MEMS flexures, stress compensation layers, and as an
encapsulant for the mirror layers. The spectral resolution matches the theoretical expected for the mirror structures used
when the residual bowing of the mirror (~15 nm across a diameter of 70 μm) is included, and can be improved to ~10 nm
if five layer mirrors are used. The out of band rejection is approximately 20 dB. Experimental results show that the
throughput of the device is sufficient to allow transmittance, specular reflectance and diffuse reflectance spectra to be
measured. The primary outstanding issue is wavelength calibration, and is being addressed using a number of
approaches including incorporation of wavelength calibration standards in the hybrid structure and accurate, real-time
measurement of the separation of the two mirrors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.