KEYWORDS: Near infrared spectroscopy, Dementia, Brain, Design and modelling, Data modeling, Neuroimaging, Neurodegeneration, Image classification, Head, Magnetic resonance imaging
SignificanceDementia presents a global healthcare crisis, and neuroimaging is the main method for developing effective diagnoses and treatments. Yet currently, there is a lack of sensitive, portable, and low-cost neuroimaging tools. As dementia is associated with vascular and metabolic dysfunction, near-infrared spectroscopy (NIRS) has the potential to fill this gap.AimThis future perspective aims to briefly review the use of NIRS in dementia to date and identify the challenges involved in realizing the full impact of NIRS for dementia research, including device development, study design, and data analysis approaches.ApproachWe briefly appraised the current literature to assess the challenges, giving a critical analysis of the methods used. To assess the sensitivity of different NIRS device configurations to the brain with atrophy (as is common in most forms of dementia), we performed an optical modeling analysis to compare their cortical sensitivity.ResultsThe first NIRS dementia study was published in 1996, and the number of studies has increased over time. In general, these studies identified diminished hemodynamic responses in the frontal lobe and altered functional connectivity in dementia. Our analysis showed that traditional (low-density) NIRS arrays are sensitive to the brain with atrophy (although we see a mean decrease of 22% in the relative brain sensitivity with respect to the healthy brain), but there is a significant improvement (a factor of 50 sensitivity increase) with high-density arrays.ConclusionsNIRS has a bright future in dementia research. Advances in technology – high-density devices and intelligent data analysis—will allow new, naturalistic task designs that may have more clinical relevance and increased reproducibility for longitudinal studies. The portable and low-cost nature of NIRS provides the potential for use in clinical and screening tests.
We are translating wearable HD-DOT to the neonatal clinic to investigate healthy and brain-injured infants and establish a model of the developmental trajectory of the infant sensorimotor system.
We have developed a series of wearable high-density diffuse optical tomography (HD-DOT) technologies specifically for neonatal applications. These systems provide an ultra-lightweight form factor, a low profile and high mechanical flexibility. This new technology is validated using a novel, anatomically accurate dynamic phantom.
KEYWORDS: Head, Data modeling, Image registration, Absorption, Diffuse optical tomography, Databases, Magnetic resonance imaging, Image restoration, Motion models, Medical research
Diffuse optical tomography relies on anatomical models to simulate light transport. We investigate which cotside measures are best to choose an individual-level head model when subject-specific data is unavailable for neonatal infants.
We applied a wearable 24-module high-density diffuse optical tomography (HD-DOT) system in a resting state (RS) paradigm repeatedly in one subject. Seed-based correlation maps show large field-of-view RS functional connectivity.
Significance: Early monolingual versus bilingual experience induces adaptations in the development of linguistic and cognitive processes, and it modulates functional activation patterns during the first months of life. Resting-state functional connectivity (RSFC) is a convenient approach to study the functional organization of the infant brain. RSFC can be measured in infants during natural sleep, and it allows to simultaneously investigate various functional systems. Adaptations have been observed in RSFC due to a lifelong bilingual experience. Investigating whether bilingualism-induced adaptations in RSFC begin to emerge early in development has important implications for our understanding of how the infant brain’s organization can be shaped by early environmental factors.
Aims: We attempt to describe RSFC using functional near-infrared spectroscopy (fNIRS) and to examine whether it adapts to early monolingual versus bilingual environments. We also present an fNIRS data preprocessing and analysis pipeline that can be used to reliably characterize RSFC in development and to reduce false positives and flawed results interpretations.
Methods: We measured spontaneous hemodynamic brain activity in a large cohort (N = 99) of 4-month-old monolingual and bilingual infants using fNIRS. We implemented group-level approaches based on independent component analysis to examine RSFC, while providing proper control for physiological confounds and multiple comparisons.
Results: At the group level, we describe the functional organization of the 4-month-old infant brain in large-scale cortical networks. Unbiased group-level comparisons revealed no differences in RSFC between monolingual and bilingual infants at this age.
Conclusions: High-quality fNIRS data provide a means to reliably describe RSFC patterns in the infant brain. The proposed group-level RSFC analyses allow to assess differences in RSFC across experimental conditions. An effect of early bilingual experience in RSFC was not observed, suggesting that adaptations might only emerge during explicit linguistic tasks, or at a later point in development.
Significance: Neonates are a highly vulnerable population. The risk of brain injury is greater during the first days and weeks after birth than at any other time of life. Functional neuroimaging that can be performed longitudinally and at the cot-side has the potential to improve our understanding of the evolution of multiple forms of neurological injury over the perinatal period. However, existing technologies make it very difficult to perform repeated and/or long-duration functional neuroimaging experiments at the cot-side.
Aim: We aimed to create a modular, high-density diffuse optical tomography (HD-DOT) technology specifically for neonatal applications that is ultra-lightweight, low profile and provides high mechanical flexibility. We then sought to validate this technology using an anatomically accurate dynamic phantom.
Approach: An advanced 10-layer rigid-flexible printed circuit board technology was adopted as the basis for the DOT modules, which allows for a compact module design that also provides the flexibility needed to conform to the curved infant scalp. Two module layouts were implemented: dual-hexagon and triple-hexagon. Using in-built board-to-board connectors, the system can be configured to provide a vast range of possible layouts. Using epoxy resin, thermochromic dyes, and MRI-derived 3D-printed moulds, we constructed an electrically switchable, anatomically accurate dynamic phantom. This phantom was used to quantify the imaging performance of our flexible, modular HD-DOT system.
Results: Using one particular module configuration designed to cover the infant sensorimotor system, the device provided 36 source and 48 detector positions, and over 700 viable DOT channels per wavelength, ranging from 10 to ∼45 mm over an area of approximately 60 cm2. The total weight of this system is only 70 g. The signal changes from the dynamic phantom, while slow, closely simulated real hemodynamic response functions. Using difference images obtained from the phantom, the measured 3D localization error provided by the system at the depth of the cortex was in the of range 3 to 6 mm, and the lateral image resolution at the depth of the neonatal cortex is estimated to be as good as 10 to 12 mm.
Conclusions: The HD-DOT system described is ultra-low weight, low profile, can conform to the infant scalp, and provides excellent imaging performance. It is expected that this device will make functional neuroimaging of the neonatal brain at the cot-side significantly more practical and effective.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.