A penetration laser welding mode characterized by formation of keyhole is often used. A small portion of the laser beam is reflected back from the keyhole and returned to the laser through the optical system of the welding head and optical fiber. The reflected radiation is monitored in the laser for the safety of the optical resonator and its signal can be read and used for process monitoring. The experiment was conducted to relate the intensity of the back-reflected radiation with depth and width of the weld for the variable focal position. The experiments were performed for two variants of the optical focusing system and materials with different thermo-physical properties - carbon steel and stainless steel. Furthermore, a mathematical model for back-reflected radiation was created using ray tracing. The shape of the keyhole was approximated as an inclined conical cavity. The results of the simulation were compared with experimentally measured data and it was found that the proposed model is most suitable for the description of stainless steel.
Laser welding is a modern, widely used but still not really common method of welding. With increasing demands on the quality of the welds, it is usual to apply automated machine welding and with on-line monitoring of the welding process. The resulting quality of the weld is largely affected by the behavior of keyhole. However, its direct observation during the welding process is practically impossible and it is necessary to use indirect methods. At ISI we have developed optical methods of monitoring the process. Most advanced is an analysis of radiation of laser-induced plasma plume forming in the keyhole where changes in the frequency of the plasma bursts are monitored and evaluated using Fourier and autocorrelation analysis. Another solution, robust and suitable for industry, is based on the observation of the keyhole inlet opening through a coaxial camera mounted in the welding head and the subsequent image processing by computer vision methods. A high-speed camera is used to understand the dynamics of the plasma plume. Through optical spectroscopy of the plume, we can study the excitation of elements in a material. It is also beneficial to monitor the gas flow of shielding gas using schlieren method.
Laser technologies such as welding and cutting rely on process gases. We suggest to use schlieren imaging to visualize the gas flow during these processes. During the process of laser welding, the shielding gas flows to the welded area to prevent oxidation of the weld pool by surrounding air. The gas also interacts with hot plasma spurting from the key hole induced by the laser beam incident on the molten material. This interaction is quite complicated because hot plasma mixes with the cold shielding gas while the system is moving along the weld. Three shielding gases were used in the presented experiment: Ar, He and N2. Differences in dynamics of the flow are clearly visible on schlieren images. Moreover, high speed recording reveals a structure consisting of hot gas bubbles. We were also able to determine the velocity of the bubbles from the recording. During laser cutting, the process gas flows coaxially with the laser beam from the nozzle to remove the molten material out of the kerf. The gas flow is critical for the quality of the resulting edge of the cut. Schlieren method was used to study gas flow under the nozzle and then under the material being cut. This actually creates another slot nozzle. Due to the very low speed of flow below the material the schleiren method is already at the limit of its sensitivity. Therefore, it is necessary to apply a differential technique to increase the contrast. Distinctive widening of the flow shaped by the kerf was observed.
KEYWORDS: Mirrors, Deformable mirrors, Actuators, High power lasers, Laser cutting, 3D scanning, 3D metrology, Optical testing, Manufacturing, Heat treatments
The modern trend in high power laser applications such as welding, cutting and surface hardening lies in the use of solid-state lasers. The output beam of these lasers is characterized by a Gaussian intensity distribution. However, the laser beams with different intensity distributions, e.g. top-hat, are preferable in various applications. In this paper we present a new type of deformable mirror suitable for the corresponding laser beam shaping. The deformation of the mirror is achieved by an underlying array of actuators and a pressurized coolant that also provides the necessary cooling. We describe the results of the surface shape measurement using a 3D scanner for different settings of actuators. Further, we show the achieved intensity distributions measured by a beam profiler for a low power laser beam reflected from the mirror.
In scanning probe microscopy laser interferometers are usually used for measuring the position of the probe tip with a
metrological traceability. As the most of the AFM setups are designed to work under standard atmospheric conditions
the changes of the refractive index of air have an influence to measured values of the length with 1.0exp(-4) relatively.
In order to achieve better accuracies the refractive index of air has to be monitored continuously and its instantaneous
value has to be used for compensating the lengths measured by all of the interferometric axes. In the presented work we
developed a new concept of an electronic unit which is able to monitor the refractive index of air on basis of
measurement of ambient atmospheric conditions: temperature, humidity, pressure of the air and the CO2 concentration. The data processing is based on Ciddor equation for calculating the refractive index of air. The important advantage of the unit is a very low power consumption of the electronics so the unit causes only negligible temperature effects to the
measured environment. The accuracy of the indirect measuring method employed by the unit was verified. We tested
the accuracy in comparison with a direct method of measuring refractive index of air based on an evacuatable cell
placed at the measuring arm of a laser interferometer. An experimental setup used for verification is presented together with a set of measurements describing the performance. The resulting accuracy of the electronic unit falls to the 4.1 exp(-7) relatively.
The depth of penetration is probably the most important factor that influences the quality of a laser weld. The
depth strongly depends on the focus of the welding beam. The sublimating material forms plasma vapors, that
act as a lens and defocus the laser beam. Our contribution presents a method to compensate this phenomenon
using an adaptive mirror - a mirror with flexible surface that can adjust the shape of the welding beam. The
mirror is regulated by a feedback control loop so that the focus of the laser beam and the penetration depth
remain in an optimal range. Since the only possibility to state the penetration depth is to monitor outer effects
to estimate desired parameters. a sensor unit is used to monitor the optical emissions of the plasma vapors
and the measured data are inputs to an algorithm that estimates the penetration depth. We have done several
experiments that study the relation of the adaptive mirror focus and the laser beam shape and how it influences
the penetration depth. The estimation results are compared with material samples from test welds. On the basis
of these experiments, a preliminary version of a control system was developed and a tested. The tests has shown
that the implementation of the control system has positive influence on the quality of the resulting weld.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.