The Virtual Telescope for X-ray Observations (VTXO) will use lightweight Phase Frensel Lenses (PFLs) in a virtual X-ray telescope with ∼1 km focal length and with ∼50 milli-arcsecond angular resolution. VTXO is formed by using precision formation flying of two SmallSats: a smaller OpticsSat that houses the PFLs and navigation beacons while a larger DetectorSat contains an X-ray camera, a precision start tracker, and the propulsion for the formation flying. The baseline flight dynamics uses a highly elliptical supersynchronous orbit allow the formation to hold in an inertial frame around the 90,000 km apogee for 10 hours of the 32.5 hour orbit with nearly a year mission lifetime. VTXO’s fine angular resolution enables measuring the environments close to the central engines of bright compact X-ray sources. This X-ray imaging capability allows for the study of the effects of dust scattering near to the central objects such as Cyg X-3 and GX 5-1, for the search for jet structure near to the compact object in X-ray novae such as Cyg X-1 and GRS 1915+105, and for the search for structure in the termination shock of in the Crab pulsar wind nebula. The VTXO SmallSat and instrument designs, mission parameters, and science performance are described. VTXO development was supported as one of the selected 2018 NASA Astrophysics SmallSat Study (AS3) missions.
NASA has funded the Cosmic Evolution Through Ultraviolet Spectroscopy (CETUS) mission study in preparation for the Decadal Survey, ASTRO2020. CETUS is developed as a Probe Class Mission, a new NASA category for astrophysics cost capped at 1B USD. This enables larger and more sophisticated observatories than under NASA’s Explorer Programs, but less ambitious than under NASA Flagship Missions. The NASA CETUS Study has resulted in a wide-field-of-view (WFOV) telescope of 1.5m aperture, with the colleting area by solid angle product A*Ω substantially higher than that for HST. CETUS will include a wide field camera, a multi-object spectrograph of the same field, and also a point source spectrometer reaching down to 100nm wavelength.
As part of a study funded by NASA headquarters, we are developing a probe-class mission concept called the Cosmic Evolution through UV Spectroscopy (CETUS). CETUS includes a 1.5-m aperture diameter telescope with a large field of view (FOV). CETUS includes three scientific instruments: a far ultraviolet (FUV) and near ultraviolet (NUV) imaging camera (CAM); a NUV multiobject spectrograph (MOS); and a dual-channel point/slit spectrograph (PSS) in the Lyman ultraviolet (LUV), FUV, and NUV spectral regions. The large FOV three-mirror anastigmatic (TMA) optical telescope assembly (OTA) simultaneously feeds the three separate scientific instruments. That is, the instruments view separate portions of the TMA image plane, enabling parallel operation by the three instruments. The field viewed by the MOS, whose design is based on an Offner-type spectrographic configuration to provide wide FOV correction, is actively configured to select and isolate numerous field sources using a next-generation micro-shutter array. The two-channel CAM design is also based on an Offner-like configuration. The PSS performs high spectral resolution spectroscopy on unresolved objects over the NUV region with spectral resolving power, R ∼ 40,000, in an echelle mode. The PSS also performs long-slit imaging spectroscopy at R ∼ 20,000 in the LUV and FUV spectral regions with two aberration-corrected, blazed, holographic gratings used in a Rowland-like configuration. The optical system also includes two fine guidance sensors, and wavefront sensors that sample numerous locations over the full OTA FOV. In-flight wavelength calibration is performed by a wavelength calibration system, and flat-fielding is also performed, both using in-flight calibration sources. We describe the current optical design of CETUS and the major trade studies leading to the design.
The Cosmic Evolution Through UV Spectroscopy (CETUS) concept1-3 enables parallel observations by the UV multiobject spectrometer (MOS) and near-UV/far-UV camera which operate simultaneously but independently with their separate field of views. The near-UV MOS can target up to 100 objects at a time without confusion with nearby sources or background zodiacal light. This multiplexing will allow over 100,000 galaxies to be observed over a typical mission lifetime. The MOS includes a next-generation micro-shutter array (NGMSA), an efficient aspheric Offner-like spectrometer design with a convex grating, and nanotube light traps for suppressing unwanted wavelengths. The NUV/FUV Camera has the capability to image in a range of sub-bands from 115-400 nm at the same time the MOS is operating at 180-350 nm. The UV camera has a similar Offner-like relay, selectable filters, and two separate detectors to optimize observing in either the far-UV (115-175 nm) or the near-UV (180-400 nm) utilizing a CsI Micro-Channel Plate detector (MCP) and a CCD respectively.
We report on the early phases of a NASA-sponsored study of CETUS (Cosmic Evolution Through Ultraviolet Spectroscopy), a Probe-class mission concept. By definition, the full lifecycle cost of a Probe mission is greater than $400M (i.e. Explorer missions) and less than $1.00B (“Flagship” missions). The animating idea behind our study is that CETUS can help answer fundamental questions about galaxy evolution by carrying out a massive UV imaging and spectroscopic survey of galaxies and combining its findings with data obtained by other survey telescopes of the 2020’s. The CETUS mission concept comprises a 1.5-m wide-field telescope and three scientific instruments: a near-UV multi-object slit spectrograph with a micro-shutter array as the slit device; a near-UV and far-UV camera with angular resolution of 0.42” (near-UV) or 0.55” (far-UV); and a near-UV or far-UV single-object spectrograph aimed at providing access to the UV after Hubble is gone. We describe the scientific rationale for CETUS and the telescope and instruments in their early design phase.
We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R~ 40,000 echelle modes and R~ 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.
The ultraviolet multi-object spectrograph (MOS) for the Cosmic Evolution Through UV Spectroscopy (CETUS) concept1,2 is a slit-based instrument allowing multiple simultaneous observations over a wide field of view. It utilizes a next-generation micro-shutter array, an efficient aspheric Offner spectrometer design with a convex grating, and carbon nanotube light traps for suppressing unwanted wavelengths. The optical coatings are also designed to optimize the UV throughput while minimizing out-of-band signal at the detector. The UV MOS will be able to target up to 100 objects at a time without the issues of confusion with nearby sources or unwanted background like zodiacal stray light. With this multiplexing, the scientific yield of both Probe and Great Observatories will be greatly enhanced.
Large astronomical missions are usually general-purpose telescopes with a suite of instruments optimized for different wavelength regions, spectral resolutions, etc. Their end-to-end (E2E) simulations are typically photons-in to flux-out calculations made to verify that each instrument meets its performance specifications. In contrast, smaller space missions are usually single-purpose telescopes, and their E2E simulations start with the scientific question to be answered and end with an assessment of the effectiveness of the mission in answering the scientific question. Thus, E2E simulations for small missions consist a longer string of calculations than for large missions, as they include not only the telescope and instrumentation, but also the spacecraft, orbit, and external factors such as coordination with other telescopes. Here, we illustrate the strategy and organization of small-mission E2E simulations using the Galaxy Evolution Spectroscopic Explorer (GESE) as a case study. GESE is an Explorer/Probe-class space mission concept with the primary aim of understanding galaxy evolution.
Operation of a small survey telescope in space like GESE is usually simpler than operations of large telescopes driven by the varied scientific programs of the observers or by transient events. Nevertheless, both types of telescopes share two common challenges: maximizing the integration time on target, while minimizing operation costs including communication costs and staffing on the ground. We show in the case of GESE how these challenges can be met through a custom orbit and a system design emphasizing simplification and leveraging information from ground-based telescopes.
GESE is a mission concept consisting of a 1.5-m space telescope and UV multi-object slit spectrograph designed to help understand galaxy evolution in a critical era in the history of the universe, where the rate of star-formation stopped increasing and started to decline. To isolate and identify the various processes driving the evolution of these galaxies, GESE will obtain rest-frame far-UV spectra of 100,000 galaxies at redshifts, z~1-2. To obtain such a large number of spectra, multiplexing over a wide field is an absolute necessity. A slit device such as a digital micro-mirror device (DMD) or a micro-shutter array (MSA) enables spectroscopy of a hundred or more sources in a single exposure while eliminating overlapping spectra of other sources and blocking unwanted background like zodiacal light. We find that a 1.5-m space telescope with a MSA slit device combined with a custom orbit enabling long, uninterrupted exposures (~10 hr) are optimal for this spectroscopic survey. GESE will not be operating alone in this endeavor. Together with x-ray telescopes and optical/near-IR telescopes like Subaru/Prime Focus Spectrograph, GESE will detect “feedback” from young massive stars and massive black holes (AGN’s), and other drivers of galaxy evolution.
One of the key goals of NASA’s astrophysics program is to answer the question: How did galaxies evolve into the spiral, elliptical, and irregular galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to help address this question by making a large ultraviolet spectroscopic survey of galaxies at a redshift, z~1 (look-back time of ~8 billion years). GESE is a 1.5-m space telescope with an near-ultraviolet (NUV) multi-object slit spectrograph covering the spectral range, 0.2-0.4 μm (0.1-0.2 μm as emitted by galaxies at a redshift, z~1) at a spectral resolution of Δλ=6 Å.
One of the key goals of NASA’s astrophysics program is to answer the question: How did galaxies evolve into the
spirals and elliptical galaxies that we see today? We describe a mission concept called Galaxy Evolution Spectroscopic
Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at redshift, z~1-2 (lookback
times of 8-10 billion years). GESE is a 1.5-m space telescope with a 3-channel multi-object slit spectrograph that
can obtain spectra of ~400 galaxies per exposure. Together, the 3 channels cover the spectral range, 0.2-1.6 μm at a
resolving power, R~400. (This observed spectral range corresponds to 0.1-0.8 μm in the restframe of a galaxy at a
redshift, z=1 galaxy.) The mission concept takes advantage of two new technological advances: (1) light-weighted, wide
field of view telescope mirrors, and (2) the Digital Micromirror Device (DMD) to be used as a slit generator in a multichannel
(UV, optical, NIR), multi-object slit spectrograph.
We present results of a study of a deployable version of the Advanced Technology Large-Aperture Space Telescope
(ATLAST), designed to operate in a Sun-Earth L2 orbit. The primary mirror of the segmented 9.2-meter aperture has 36
hexagonal 1.315 m (flat-to-flat) glass mirrors. The architecture and folding of the telescope is similar to JWST, allowing
it to fit into the 6.5 m fairing of a modest upgrade to the Delta-IV Heavy version of the Evolved Expendable Launch
Vehicle (EELV). We discuss the overall observatory design, optical design, instruments, stray light, wavefront sensing
and control, pointing and thermal control, and in-space servicing options.
The Terrestrial Planet Finder - Occulter (TPF-O) mission has two Spacecraft (SC) buses, one for a formation-flying
occulter and the other for a space telescope. These buses supply the utilities (support structures, propulsion, attitude
control, power, communications, etc) required by the payloads: a deployable shade for the occulter and a telescope with
instruments for the space telescope. Significant requirements for the occulter SC bus are to provide the large delta V
required for the slewing maneuvers of the occulter and communications for formation flying. The TPF-O telescope SC
bus shares some key features of the one for the Hubble Space Telescope (HST) in that both support space telescopes
designed to observe in the visible to near infrared range of wavelengths with comparable primary mirror apertures (2.4 m
for HST, 2.4 - 4.0 m for TPF-O). Significant differences from HST are that 1) the TPF-O telescope is expected to have a
Wide Field Camera (WFC) that will have a Field of View (FOV) large enough to provide fine guidance, 2) TPF-O is
designed to operate in an orbit around the Sun-Earth Lagrange 2 (SEL2) point which requires TPF-O (unlike HST) to
have a propulsion system, and 3) the velocity required for reaching SEL2 and the limited capabilities of affordable
launch vehicles require both TPF-O elements to have compact, low-mass designs. Additionally, it is possible that TPF-O
may utilize a modular design derived from that of HST to allow robotic servicing in the SEL2 orbit.
We present a conceptual design for a scalable (10-50 meter segmented filled-aperture) space observatory operating at UV-optical-near infrared wavelengths. This telescope is designed for assembly in space by robots, astronauts or a combination of the two, as envisioned in NASA's Vision for Space Exploration. Our operations concept for this space telescope provides for assembly and check-out in an Earth Moon L2 (EML2) orbit, and transport to a Sun-Earth L2 (SEL2) orbit for science operations and routine servicing, with return to EML2 for major servicing. We have developed and analyzed initial designs for the optical, structural, thermal and attitude control systems for a 30-m aperture space telescope. We further describe how the separate components are packaged for launch by heavy lift vehicle(s) and the approach for the robot assembly of the telescope from these components.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.