Proceedings Article | 4 September 1998
KEYWORDS: Soil science, Synthetic aperture radar, Target detection, Algorithm development, Dielectrics, Radar, Signal attenuation, Roads, Detection and tracking algorithms, Mining
The Army Research Laboratory (ARL) has several technology development programs that are evaluating the use of ultra- wideband synthetic aperture radar (UWB SAR) to detect and locate targets that are subsurface or concealed by foliage. Under these programs, a 1-GHz-bandwidth, low-frequency, fully polarimetric UWB SAR instrumentation system was developed to collect the data needed to support foliage and ground- penetrating radar studies. The radar was integrated onto a 150-ft-high mobile boomlift platform in 1995 and was thus named the BoomSAR. In 1997, under the sponsorship of the Strategic Environmental Research and Development Program (SERDP), ARL began a project focused on enhancing the detection and discrimination of unexploded ordnance (UXO). The program's technical approach is to collect high-quality, precision data to support phenomenological investigations of electromagnetic wave propagation through varying dielectric media, which in turn supports the development of algorithms for automatic target detection. For this project, a UXO test site was set up at the Steel Crater Test Area -- an existing test site that already contained subsurface mines, tactical vehicles, 55-gallon drums, storage containers, wires, pipes, and arms caches located at Yuma Proving Ground (YPG), Arizona. More than 600 additional pieces of inert UXO were added to the Steel Crater Test Area, including bombs (250, 500, 750, 1000, and 2000 lb), mortars (60 and 81 mm), artillery shells (105 and 155 mm), 2.75-in. rockets, submunitions (M42, BLU-63, M68, BLU-97, and M118), and mines (Gator, VS1.6, M12, PMN, and POM- Z). In the selection of UXO to be included at YPG, an emphasis was placed on the types of munitions that may be present at CONUS test and training ranges.