Recently much attention gained development of “buffer free” AlGaN/GaN HEMT structures with thin high quality AlN nucleation layer for better carrier confinement in the transistor channel mitigating short channel effects and with reduced thermal resistance. In this work results of development of low resistivity Ti/Al/TiN/Au ohmic contacts to such a structures will be presented . The impact of annealing temperature and different metal layer thickness on the ohmic contact formation, morphology and structural and electrical properties was studied. Low contact resistance of 0.28 Ωmm was obtained for metal stack with Ti/Al 20nm/80nm thickness after annealing at 750°C. Developed ohmic contacts were integrated in the AlGaN/GaN HEMT fabrication process. Good electrical characteristics were obtained showing high on-state current up to 0.95 A/mm. These prove applicability of developed process in technology of buffer-free AlGaN/GaN high electron mobility transistors.
Conditions of fabrication of first-order distributed-feedback surface gratings designed for single-mode Al0.45Ga0.55As/GaAs quantum cascades lasers with the emission wavelength of about 10 μm are presented. The 1-μm-deep rectangular-shaped gratings with the period of about 1.55 μm and duty cycle in the range of 65% to 71% made by the standard photolithography are demonstrated. The wavenumber difference of about 7 cm−1 at 77 K is observed for the radiation emitted by lasers fabricated from the same epitaxial structure with ridge widths in the range of 15 to 25 μm. Moreover, the emission wavelength of the lasers could be tuned with temperature at a rate of 1 nm/K in the temperature range of 77 to 120 K. The full width at half maximum of the emitted spectra is ∼0.4 cm−1.
Conditions of fabrication of first order distributed-feedback surface gratings designed for single-mode Al0.45Ga0.55As/GaAs quantum cascades lasers with the emission wavelength of about 10μm are presented. The 1 μm-deep rectangular-shaped gratings with the period of about 1.55 μm and duty cycle in the range of 65-71% made by the standard photolithography are demonstrated. The wavenumber difference of about 7 cm-1 at 77 K is observed for the radiation emitted by lasers fabricated from the same epitaxial structure with ridge widths in the range of 15-25 μm. Moreover, the emission wavelength of the lasers could be tuned with temperature at a rate of 1 nm/K in the temperature range of 77-120 K. The full width at half maximum of the emitted spectra is ~ 0.4 cm-1.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.