In photoacoustic tomography (PAT), measurement errors arise from optical fluence spatial and temporal variations caused by tissue optical absorption and scattering heterogeneities, system noise, and motion. These errors influence the estimation accuracy of blood oxygenation saturation (sO2). In this study, we introduce a sliding multi-pixel approach to mitigate the effect of measurement errors before computing sO2 maps. As a result, the sO2 estimation is both more accurate, as evaluated by residual fitting errors, as well as smoother. We conclude by presenting diagnostic results from PAT of 33 patients with ovarian masses imaged by our coregistered PAT and ultrasound system.
It is important to provide timely information to surgeons on diagnosis of a suspicious ovarian tissue before excision to avoid unnecessary surgery, especially for young women. In this report, we introduce a new 3-D surface mapping technique to map ovarian tissue scattering properties by fitting the swept-source optical coherence tomography (SS-OCT) signals to a scattering model. We observed that lower scattering coefficients and heterogeneous spatial distribution were associated with malignant ovarian tissues, and higher scattering coefficients and homogeneous spatial distribution indicated benign ovarian tissues. The initial results suggest that the 3-D scattering map has potential to be an effective tool to characterize normal and malignant ovarian tissues.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.