PurposeDeep learning (DL) models have received much attention lately for their ability to achieve expert-level performance on the accurate automated analysis of chest X-rays (CXRs). Recently available public CXR datasets include high resolution images, but state-of-the-art models are trained on reduced size images due to limitations on graphics processing unit memory and training time. As computing hardware continues to advance, it has become feasible to train deep convolutional neural networks on high-resolution images without sacrificing detail by downscaling. This study examines the effect of increased resolution on CXR classification performance.ApproachWe used the publicly available MIMIC-CXR-JPG dataset, comprising 377,110 high resolution CXR images for this study. We applied image downscaling from native resolution to 2048 × 2048 pixels, 1024 × 1024 pixels, 512 × 512 pixels, and 256 × 256 pixels and then we used the DenseNet121 and EfficientNet-B4 DL models to evaluate clinical task performance using these four downscaled image resolutions.ResultsWe find that while some clinical findings are more reliably labeled using high resolutions, many other findings are actually labeled better using downscaled inputs. We qualitatively verify that tasks requiring a large receptive field are better suited to downscaled low resolution input images, by inspecting effective receptive fields and class activation maps of trained models. Finally, we show that stacking an ensemble across resolutions outperforms each individual learner at all input resolutions while providing interpretable scale weights, indicating that diverse information is extracted across resolutions.ConclusionsThis study suggests that instead of focusing solely on the finest image resolutions, multi-scale features should be emphasized for information extraction from high-resolution CXRs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.