A photonic engine for the integration of multi-lane optical transceivers is presented. The building blocks are InP-based electro-absorption modulated lasers and photodiodes capable of operating at 50 GBaud with PAM-4 modulation, and a low-cost polymer waveguiding chip providing routing of the multiple lanes and connectivity towards standard single-mode fibers. An automatic process for the hybrid assembly of the different building blocks has been developed, and photonic integrated circuits with up to 16 lanes have been demonstrated. Furthermore, high-frequency flexible interconnects with bandwidths beyond 100 GHz provide a connectivity solution between photonics and high-speed electronics.
Commercial introduction of emerging integrated photonics technologies requires a long and complex multi-layer product development, industrialization, and qualification cycles at all levels of value chain from initial product design, material sourcing, component-system-module manufacturing, and testing, through marketing and delivery of new products to the market. Scalable assembly and packaging of electronic-photonic integrated modules is important and may take more than a half of the entire product’s costs. In this paper, we will report on some of our industrial processes for scalable photonics packaging, as well as challenges and results obtained from our research and innovation projects.
Fraunhofer HHI's hybrid integration platform PolyBoard combines polymer passive waveguides with InP and other materials. We present new functionalities integrated in PolyBoard:
Isolation: With a microoptical bench integrated into polymer isolators can be built.
Quantum and sensing: By integrating nonlinear materials into the microoptical bench, 2nd (775 nm), 3rd (515 nm), and 4th (387 nm) harmonic generation could be observed
3D: First results for a 2x4 phased array have been achieved
Flip-chip laser active alignment: We have developed an active alignment process, which also works for flip-chip lasers which are impossible to electrically contact during the alignment process.
First automation results show the potential for cost effective volume scaling.
Ultra-narrow linewidth tunable hybrid integrated lasers are built from a combination of indium phosphide (InP) and silicon nitride-based TriPleX™. By combining the active functionality of InP with the ultra-low loss properties of the TriPleX™ platform narrow linewidth lasers in the C-band are realized. The InP platform is used for light generation and the TriPleX™ platform is used to define a long cavity with a wavelength-selective tunable filter. The TriPleX™ platform has the ability to adapt mode profiles over the chip and is extremely suitable for mode matching to the other platforms for hybrid integration. The tunable filter is based on a Vernier of micro-ring resonators to allow for single-mode operation, tunable by thermo-optic or stress-induced tuning. This work will show the operational principle and benefits of the hybrid lasers and the state of the art developments in the realization of these lasers. High optical powers ( <100 mW) are combined with narrow linewidth (< 1 kHz) spectral responses with tunability over a large (>100 nm) wavelength range and a low relative intensity (< -160 dB/Hz).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.