Recognizing the online Arabic handwritten script has been gaining more interest because of the impressive advances in mobile device requiring more and more intelligent handwritten recognizers. Since it was demonstrated within many previous research that Deep Neural Networks (DNN) exhibit a great performance, we propose in this work a new system based on a DNN in which we try to optimize the training process by a smooth construct of the deep architecture. The Output’s error of each unit in the previous layer will be computed and only the smallest error will be maintained in the next iteration. This paper uses LMCA database for training and testing data. The experimental study reveals that our proposed DBNN using generated Bottleneck features can outperform state of the art online recognizers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.