This will count as one of your downloads.
You will have access to both the presentation and article (if available).
AMOS has acquired in more than 30 years a large experience in design, analysis, fabrication and commissioning of 2 to 4 m-class telescopes. Strong of this experience, the multidisciplinary integrated team of the project was able to design the Mt ABU 2.5-m telescope in one year with a great mastering of the technologies and sub-systems development which are used. This is the key point for the risk management of the project.
In this paper is presented the overall design of the telescope. This includes the optical design, the opto-mechanical design of the mirror supports and, in particular the active primary mirror support, the mount design and the control system for which AMOS has developed a main axes servo control based on industrial programmable logic controller (PLC). The closed loops sensing devices (wavefront sensor and guider) and their associated control systems are also presented. The Assembly, Integration and Verification (AIV) activities are finally discussed.
Diffraction-limited performances will be reached thanks to the combination of the active optics system and the adaptive optics system that will be implemented on one of the Nasmyth ports. The active optics system aims at controlling the shape of the primary mirror by means of 66 axial force actuators and positioning actively the secondary and tertiary mirrors by means of hexapods.
More than 30 years of experience in testing instruments and telescopes, including optical testing, alignment, metrology, mechanical static and dynamic measurements, system identification, etc. allow to implement an adequate verification strategy combining component level verifications with factory and site test in the most efficient and reliable manner.
As a main contractor, AMOS is in charge of the overall project management, the system engineering, the optical design and the active optics development. As a main sub-contractor and partner of AMOS, EIE is in charge of the development of the mount. The factory test therefore takes place in EIE premises.
In this paper is shortly presented the overall design of the telescope with a review of the specification, the optical design and a description of the major sub-systems, including the optics. The assembly, integration et test plan is outlined. The assembly sequence and the tests of the active optics and the mount are discussed. Finally, the site integration and tests are explained. The process to assess the image quality of the telescope and the verification instrument developed for this purpose by AMOS are presented.
The EUCLID payload module (PLM) consists of a 1.2 m-class telescope and will accommodate two instruments.
As a subcontractor of AIRBUS Defence and Space, AMOS is responsible for the manufacturing of the secondary and the third mirrors of the telescope as well as for the flat folding mirror set within the focal plane arrangement of EUCLID telescope, which incorporates dedicated filtering functions. AMOS produces in addition the 1.3 m-class test collimator for the on-ground validation of the EUCLID instrument.
View contact details
No SPIE Account? Create one