KEYWORDS: Databases, Digital signal processing, Embedded systems, Control systems, Telecommunications, Signal processing, Computer programming, C++, Systems engineering, Error control coding
The UDP (User Defined Program) system is a scripting framework for controlling and extending instrumentation
software. It has been specially designed for air- and space-borne instruments with flexibility, error control, reuse,
automation, traceability and ease of development as its main objectives. All the system applications are connected
through a database containing the valid script commands including descriptive information and source code. The system
can be adapted to different projects without changes in the framework tools, thus achieving great level of flexibility and
reusability. The UDP system comprises: an embedded system for the execution of scripts by the instrument software;
automatic tools for aiding in the creation, modification, documentation and tracing of new scripting language commands;
and interfaces for the creation of scripts and execution control.
In this work, it is described the Imaging Magnetograph eXperiment, IMaX, one of the three postfocal instruments of
the Sunrise mission. The Sunrise project consists on a stratospheric balloon with a 1 m aperture telescope, which will fly
from the Antarctica within the NASA Long Duration Balloon Program.
IMaX will provide vector magnetograms of the solar surface with a spatial resolution of 70 m. This data is relevant
for understanding how the magnetic fields emerge in the solar surface, how they couple the photospheric base with the
million degrees of temperature of the solar corona and which are the processes that are responsible of the generation of
such an immense temperatures.
To meet this goal IMaX should work as a high sensitivity polarimeter, high resolution spectrometer and a near
diffraction limited imager. Liquid Crystal Variable Retarders will be used as polarization modulators taking advantage of
the optical retardation induced by application of low electric fields and avoiding mechanical mechanisms. Therefore, the
interest of these devices for aerospace applications is envisaged. The spectral resolution required will be achieved by
using a LiNbO3 Fabry-Perot etalon in double pass configuration as spectral filter before the two CCDs detectors. As well
phase-diversity techniques will be implemented in order to improve the image quality.
Nowadays, IMaX project is in the detailed design phase before fabrication, integration, assembly and verification.
This paper briefly describes the current status of the instrument and the technical solutions developed to fulfil the
scientific requirements.
The SUNRISE balloon project is a high-resolution mission to study solar magnetic fields able to resolve the critical scale of 100 km in the solar photosphere, or about one photon mean free path. The Imaging Magnetograph eXperiment (IMaX) is one of the three instruments that will fly in the balloon and will receive light from the 1m aperture telescope of the mission. IMaX should take advantage of the 15 days of uninterrupted solar observations and the exceptional resolution to help clarifying our understanding of the
small-scale magnetic concentrations that pervade the solar surface. For this, IMaX should act as a diffraction limited imager able to carry out spectroscopic analysis with resolutions in the 50.000-100.000 range and capable to perform polarization measurements. The solutions adopted by the project to achieve all these three demanding goals are explained in this article. They include the use of Liquid Crystal Variable Retarders for the polarization modulation, one
LiNbO3 etalon in double pass and two modern CCD detectors that allow for the application of phase diversity techniques by slightly changing the focus of one of the CCDs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.