Tissue engineering (TE) holds promise for generating lab-grown patient specific organs which can provide: (1) effective treatment for conditions that require volumetric tissue transplantation and (2) new platforms for drug testing. Even though volumetric structural information is essential for confirming successful organ maturation, TE protocol designs are currently informed through destructive and 2D construct assessment tools (e.g. histology). X-ray phase-contrast computed-tomography (PC-CT) can generate non-destructive, high resolution, 3D density maps of organ architecture. In this work, PC-CT is used as new imaging tool for guiding two TE protocols currently at the in-vitro testing stage. The first (1) involves cell-repopulation of an oesophageal scaffold, with the aim of using the regenerated construct for treating long-gap oesophageal atresia, whilst for the second (2) a lung-derived scaffold is populated with islets for regenerating a pancreas, with the “repurposed” lung offering a platform for diabetes drug testing. By combing 3D images and quantitative information, we were able to perform comprehensive construct evaluation. Specifically, we assessed volumetrically: (1) the cell-distribution within the regenerated oesophagi and (2) islet integration with the vascular tree of the lung-derived scaffold. This new information was proven to be essential for establishing corresponding TE protocols and enabled their progression to more advanced scale-up models. We are confident that PC-CT will provide the novel insights necessary to further progress TE protocols, with the next step being in-vivo testing. Crucially, the non-destructive nature of PC-CT will allow in-vivo assessments of TE constructs following their implantation into animal hosts, to investigate their successful integration.
We report about multiscale tomography with high throughput at the Diamond beamline I13L. The beamline has the purpose of multi-scale and operando imaging and consists of two independent branchlines operating in real and reciprocal space. The imaging branch -called Diamond-Manchester branchline- hosts micro-tomography, grating interferometry and a full-field microscope. For rapid recording a broad spectrum of the undulator radiation is used either with band-passing the light with a combination of a filter and a deflecting mirror or using a multilayer monochromator. For all the methods similar recording times can be achieved, with typical scanning times of some minutes and covering the resolution range from microns to the 100nm range. Most recently a robot arm has been installed to increase the throughput to 300 samples per day. The system is now implemented for user operation in remote operation mode for the micro-tomography setup and can be expanded to the two other experiments. The instrumental capabilities are applied on various topics such as the study of biodiversity of insects or the structural variations of electrode materials in batteries. Fast recording with dedicated sample environments (not using the sample changing robot) enables operando studies in many areas, the charging/discharging cycles on batteries, the degradation of teeth enamel under various conditions or loading brine sandstone mixtures with CO2, to name some examples. For imaging with highest spatial resolution we managed to improve significantly the recording speed of ptycho-tomography, which is now in the order of hours and will be reduced further. We demonstrated in the past 2-D recording with 10kHz and expand the instrumental capability with specific hardware dependent triggering and scanning schemes. We expand the research program for multi-scale imaging across both branchlines (imaging and coherence branchlines) with first studies such as batteries, brain research, concrete.
We report about our current capabilities and future plans in multi-scale imaging with high recording speed. For micro-tomographic imaging an automated system is used measuring up to 300 samples per day. For sub-micron and nano measurements the so-called polychromatic ‘pink beam’ is employed. The larger energy bandwidth compared to monochromatic beam permits recording times similar to microtomography. For highest resolution namely ptychography the acquisition time for tomographic scans is currently in the order of hours and below an hour in the near future. The current multi-scale science and the scientific perspective with the Diamond beamline I13L upgrade will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.