The Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite is a strategic climate continuity mission that will answer new and emerging advanced science questions related to Earth’s changing climate. These science goals are accomplished via PACE’s main optical instrument, a sophisticated spectrograph, the Ocean Color Instrument (OCI) consisting of UV/VIS and VIS/NIR channels each complete with a dichroic, grating, and detector. We will overview the characterization methods used for each component, with respect to its metrology targets, and further discuss how baseline characterization served as a proxy when lines of sight to the optical components’ boresights were lost in later integration steps.
The JWST is an international collaboration among the NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA). It is a large (6.5 m primary mirror diameter), infrared (0.6-27 ?m) observatory that will study the first galaxies of the early Universe, the birth of stars and protoplanetary systems as well as exoplanets.
The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a “toolbox” format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.
NASA’s James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SI), including a guider. The SIs and guider are mounted to a composite metering structure with outer envelope approximate measurements of 2.2x2.2x1.7m. These SI units are integrated to the ISIM structure and optically tested at NASA Goddard Space Flight Center as an instrument suite using an Optical telescope element SIMulator (OSIM). OSIM is a high-fidelity, cryogenic JWST simulator that features a ~1.5m diameter powered mirror. The SIs are aligned to the flight structure’s coordinate system under ambient, clean room conditions using opto-mechanical metrology and customized interfaces. OSIM is aligned to the ISIM mechanical coordinate system at the cryogenic operating temperature via internal mechanisms and feedback from alignment sensors and metrology in six degrees of freedom. SI performance, including focus, pupil shear, pupil roll, boresight, wavefront error, and image quality, is evaluated at the operating temperature using OSIM. This work reports on the as-run ambient assembly and ambient alignment steps for the flight ISIM, including SI interface fixtures and customization and kinematic mount adjustment. The ISIM alignment plan consists of multiple steps to meet the “absolute” alignment requirements of the SIs and OSIM to the flight coordinate system. In this paper, we focus on key aspects of absolute, optical-mechanical alignment. We discuss various metrology and alignment techniques. In addition, we summarize our approach for dealing with and the results of ground-test factors, such as gravity.
NASA’s James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy (~40K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI), including a guider. OSIM is a full field, cryogenic, optical simulator of the JWST OTE. It is the “Master Tool” for verifying the cryogenic alignment and optical performance of ISIM by providing simulated point source/star images to each of the four Science Instruments in ISIM. Included in OSIM is a Pupil Imaging Module (PIM) - a large format CCD used for measuring pupil alignment. Located at a virtual stop location within OSIM, the PIM records superimposed shadow images of pupil alignment reference (PAR) targets located in the OSIM and SI pupils. The OSIM Pupil Imaging Module was described by Brent Bos, et al, at SPIE in 2011 prior to ISIM testing. We have recently completed the third and final ISIM cryogenic performance verification test before ISIM was integrated with the OTE. In this paper, we describe PIM implementation, performance, and measurement results.
KEYWORDS: Lawrencium, Silicon, Optical alignment, Virtual colonoscopy, James Webb Space Telescope, Metrology, Space telescopes, Telescopes, Finite element methods, Mirrors
While efforts within the optics community focus on the development of high-quality systems and data products, comparatively little attention is paid to their use. Our standards for verification and validation are high; but in some user domains, standards are either lax or do not exist at all. In forensic imagery analysis, for example, standards exist to judge image quality, but do not exist to judge the quality of an analysis. In litigation, a high quality analysis is by default the one performed by the victorious attorney’s expert. This paper argues for the need to extend quality standards into the domain of imagery analysis, which is expected to increase in national visibility and significance with the increasing deployment of unmanned aerial vehicle—UAV, or “drone”—sensors in the continental U. S.. It argues that like a good radiometric calibration, made as independent of the calibrated instrument as possible, a good analysis should be subject to standards the most basic of which is the separation of issues of scientific fact from analysis results.
A unique polarization camera has been fabricated out of a wire grid polarizer attached to the surface of a
InGaAs FPA. The wire grid was configured as a Stokes polarimeter. Data has been collected for both space
and earthbound applications using both active and passive illumination. A mini-range and scaled targets of
representative materials were constructed to simulate space based distances for both resolved and
unresolved targets. For the purpose of providing advanced warning for rotorcraft, data has been collected on
power lines to test the feasibility and appropriateness of this type of technology to aid in their detection.
Spectral results including reflectance, transmittance, rTIS, and tTIS are presented for diffractively structured GaAs using the Automated Rasterable Integrated Spectrometric and Total Integrated Scatter Measurement System (ARISTMS). The data is for the bandwidth of 10&mgr;m to 12&mgr;m over a range of incidence angles between 0° to 75°. A description of the diffractively structured GaAs and the operation of the ARISTMS are given.
A new capability to acquire large amounts of spectrally determined optical data for a wide range of materials has been designed and developed from commercial off the shelf equipment. The software control system was written using LABVIEW 7.0. The Automated Rasterable Integrated Spectrometric and Total Integrated Scatter Measurement System (ARISTMS) represents a fusion of state-of-the-art technology and systems software to facilitate automated data acquisition to determine a material's spectral characteristics, surface roughness, and absorptance. It was developed as part of an ongoing Phase II SBIR effort to develop diffractively structured gallium arsenide infrared windows that are 100 mm in diameter transmitting between 1 and 10 microns. It was necessary to develop a capability that could scan or raster across the entire surface area of the window, vary the incident spot size, step size, and angle of incidence over the infrared spectrum of interest. The system offers a cost effective capability to screen many samples against preset thresholds for reflectance, transmittance, absorptance, and total integrated scatter for any number of measurement scenarios and sample classes.
A process to diffractively structure GaAs for enhanced optical performance is described. The benefits of diffractively structuring an EOIR window material include improved FOR/FOV, consistent broadband performance, the ability to design and implement hyper-spectral characteristics directly into the substrate without incorporating a complex anti-reflective coating. Progress to date will be discussed including design evolution, process implementation, and optical characterization using the Automated Rasterable Integrated Spectrometer and TIS Measurement System (ARISTMS). Results will be presented on 100mm diameter samples.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.