We summarize the current best polychromatic (∼10% to 20% bandwidth) contrast performance demonstrated in the laboratory by different starlight suppression approaches and systems designed to directly characterize exoplanets around nearby stars. We present results obtained by internal coronagraph and external starshade experimental testbeds using entrance apertures equivalent to off-axis or on-axis telescopes, either monolithic or segmented. For a given angular separation and spectral bandwidth, the performance of each starlight suppression system is characterized by the values of “raw” contrast (before image processing), off-axis (exoplanet) core throughput, and post-calibration contrast (the final 1-sigma detection limit of off-axis point sources, after image processing). Together, the first two parameters set the minimum exposure time required for observations of exoplanets at a given signal-to-noise, i.e., assuming perfect subtraction of background residuals down to the photon noise limit. In practice, residual starlight speckle fluctuations during the exposure will not be perfectly estimated nor subtracted, resulting in a finite post-calibrated contrast and exoplanet detection limit whatever the exposure time. To place the current laboratory results in the perspective of the future Habitable Worlds Observatory (HWO) mission, we simulate visible observations of a fiducial Earth/Sun twin system at 12 pc, assuming a 6 m (inscribed diameter) collecting aperture and a realistic end-to-end optical throughput. The exposure times required for broadband exo-Earth detection (20% bandwidth around λ=0.55 μm) and visible spectroscopic observations (R=70) are then computed assuming various levels of starlight suppression performance, including the values currently demonstrated in the laboratory. Using spectroscopic exposure time as a simple metric, our results point to key starlight suppression system design performance improvements and trades to be conducted in support of HWO’s exoplanet science capabilities. These trades may be explored via numerical studies, lab experiments, and high-contrast space-based observations and demonstrations.
The National Aeronautics and Space Administration’s (NASA) Astrophysics Division (APD) funds the development of cutting-edge technologies through multiple programs to enable its strategic missions to achieve ambitious and groundbreaking science goals. These technology development efforts are managed by the Cosmic Origins (COR), Exoplanet Exploration (ExE), and Physics of the Cosmos (PhysCOS) programs. The 2020 Astronomy and Astrophysics Decadal Survey, “Pathways to Discovery in Astronomy and Astrophysics for the 2020s” [1] (Astro2020), recommended a pan-chromatic set of missions, including three Great Observatories (GOs) and three Probe-class missions that could collect unprecedented data over the coming decades. We show the correlation between these strategic missions and the current astrophysics technology gaps, as well as recent and current technology maturation projects funded to help close these technology gaps. We also cover how these investments advanced their Technology Readiness Levels (TRLs) [2] and where they have been infused into missions and projects.
NASA’s Habitable Worlds Observatory (HWO) mission is intended to search for biosignatures from ~25 exoplanets in the habitable zones of their host stars using a coronagraph instrument. This requires the coronagraph to directly detect and spectrally analyze photons from planets that are merely ~ 0.1 arcsec from the host star and ~ 10 billion times fainter. Achieving extreme contrast levels at extremely small angular separations is a daunting technological challenge. A working group of 50+ multi-institutional experts has been developing a first cut at a coronagraph technology roadmap to identify key technology gaps and enabling technology developments for HWO’s coronagraph instrument system. This paper will present a summary of the working group’s findings.
NASA is embarking on an ambitious program to develop the Habitable Worlds Observatory (HWO) flagship to perform transformational astrophysics, as well as directly image ∼ 25 potentially Earth-like planets and spectroscopically characterize them for signs of life. This mission was recommended by Astro2020, which additionally recommended a new approach for flagship formulation based on increasing the scope and depth of early, pre-phase A trades and technology maturation. A critical capability of the HWO mission is the suppression of starlight. To inform future architecture trades, it is necessary to survey a wide range of candidate technologies, from the relatively mature ones such as the ones described in the LUVOIR and HabEx reports to the relatively new and emerging ones, which may lead to breakthrough performance. In this paper, we present a summary of an effort, funded by NASA’s Exoplanet Exoplaration Program (ExEP), to survey potential coronagraph options for HWO. In particular, our results consist of: (1) a database of different coronagraph designs sourced from the world-wide coronagraph community that are potentially compatible with HWO; (2) evaluation criteria, such as expected mission yields and feasibility of maturing to TRL 5 before phase A; (3) a unified modeling pipeline that processes the designs from (1) and outputs values for any machine-calculable criteria from (2); (4) assessments of maturity of designs, and other criteria that are not machine-calculable; (5) a table presenting an executive summary of designs and our results. While not charged to down-select or prioritize the different coronagraph designs, the products of this survey were designed to facilitate future HWO trade studies.
One of the primary science goals of the Habitable Worlds Observatory (HWO) as defined by the Astro2020 decadal survey is the imaging of the first Earth-like planet around a Sun-like star. A key technology gap towards reaching this goal are the development of ultra-low-noise photon counting detectors capable of measuring the incredibly low count rates coming from these planets which are at contrasts of ∼ 1 × 10−10. Superconducting energyresolving detectors (ERDs) are a promising technology for this purpose as, despite their technological challenges, needing to be cooled below their superconducting transition temperature (< 1K), they have essentially zero read noise, dark current, or clock-induced charge, and can get the wavelength of each incident photon without the use of additional throughput-reducing filters or gratings that spread light over many pixels. The use of these detectors on HWO will not only impact the science of the mission by decreasing the required exposure times for exo-Earth detection and characterization, but also in a wavefront sensing and control context when used for starlight suppression to generate a dark zone. We show simulated results using both an EMCCD and an ERD to “dig a dark zone” demonstrating that ERDs can achieve the same final contrast as an EMCCD in about half of the total time. We also perform a simple case study using an exposure time calculator tool called the Error Budget Software (EBS) to determine the required integration times to detect water for HWO targets of interest using both EMCCDs and ERDs. This shows that once a dark zone is achieved, using an ERD can decrease these exposure times by factors of 1.5–2 depending on the specific host star properties.
NASA is about to embark on an ambitious program to develop a Habitable Worlds Observatory (HWO) flagship mission to directly image approximately 25 potentially Earth-like planets and spectroscopically characterize them for signs of life, as recommended by the Astro2020 decadal survey. In addition, Astro2020 recommended a new approach for flagship formulation, which involves increasing the scope and depth of early, pre-phase A trades and technology maturation, as part of the new Great Observatories Maturation Program (GOMAP). The critical capability of the HWO mission is starlight suppression. To inform future architecture trades, it is necessary to survey a wide range of technologies, from the relatively mature ones such as the ones described in the LUVOIR and HabEx reports, to the relatively new and emerging ones, which may lead to breakthrough performance. In this paper, we present an interim update on a new effort, initiated by NASA’s Exoplanet Exploration Program (ExEP), to survey coronagraph design options for HWO. We present a preliminary summary of the survey, including: (1) a current list of coronagraph design options; (2) proposed evaluation criteria, such as expected mission yields and feasibility of maturing to TRL5 by 2029; and (3) tools and methods which we are using to quantify evaluations of different designs. While not charged to down-select or prioritize the different coronagraph designs, this survey is expected to be valuable in informing future mission teams of coronagraph design options. All interested coronagraph researchers are welcome to participate in this survey by contacting the first two authors of this paper.
Directly imaging Earth-like exoplanets (“exoEarths”) with a coronagraph instrument on a space telescope requires a stable wavefront with optical path differences limited to tens of picometers RMS during exposure times of a few hours. Although the structural dynamics of a segmented mirror can be directly stabilized with telescope metrology, another possibility is to use a closed-loop wavefront sensing and control system in the coronagraph instrument that operates during the science exposures to actively correct the wavefront and relax the constraints on the stability of the telescope. We present simulations of the temporal filtering provided using the example of LUVOIR-A, a 15-m segmented telescope concept. Assuming steady-state aberrations based on a finite-element model of the telescope structure, we (1) optimize the system to minimize the wavefront residuals, (2) use an end-to-end numerical propagation model to estimate the residual starlight intensity at the science detector, and (3) predict the number of exoEarth candidates detected during the mission. We show that telescope dynamic errors of 100 pm RMS can be reduced down to 30 pm RMS with a magnitude 0 star, improving the contrast performance by a factor of 15. In scenarios where vibration frequencies are too fast for a system that uses natural guide stars, laser sources can increase the flux at the wavefront sensor to increase the servo-loop frequency and mitigate the high temporal frequency wavefront errors. For example, an external laser with an effective magnitude of −4 allows the wavefront from a telescope with 100 pm RMS dynamic errors and strong vibrations as fast as 16 Hz to be stabilized with residual errors of 10 pm RMS thereby increasing the number of detected planets by at least a factor of 4.
The Astro2020 decadal survey recommended a ~6m IR/O/UV telescope equipped with a coronagraph instrument to directly image exoEarths in the habitable zone of their host star. A telescope of such size may need to be segmented to be folded and then carried in current launch vehicles. However, a segmented primary mirror introduces the potential for mid spatial frequency optical wavefront instabilities during the science operations that would degrade the coronagraph performance. A coronagraph instrument with a wavefront sensing and control (WS&C) system can stabilize the wavefront with a picometer precision at high temporal frequencies (<1Hz). In this work, we study a realistic set of aberrations based on a finite element model of a slightly bigger (8m circumscribed, 6.7m inscribed diameter) segmented telescope with its payload. We model an adaptive optics (AO) system numerically to compute the post-AO residuals. The residuals then feed an end-to-end model of a vector vortex coronagraph instrument. The long exposure contrast thus obtained is finally used in an ExoEarth yield method calculation to understand the overall benefits of the adaptive optics system in the flagship mission success.
One of the primary science goals of the Large UV/Optical/Infrared Surveyor (LUVOIR) mission concept is to detect and characterize Earth-like exoplanets around nearby stars with direct imaging. The success of its integrated instrument ECLIPS (Extreme Coronagraph for Living Planetary Systems) depends on the ability to stabilize the wavefront from a large segmented mirror at a level of a few picometers during an exposure time of a few hours. To relax the constraints on the mechanical stability, ECLIPS will be equipped with a wavefront sensing and control (WS&C) architecture to correct wavefront errors at high temporal frequencies (<~1 Hz). These errors are expected to be dominated by spacecraft structural dynamics exciting vibrations at the segmented primary mirror. In this work, we present detailed simulations of the WS&C system within the ECLIPS instrument and the resulting contrast performance. This study assumes realistic wavefront aberrations based on a Finite Element Model of the telescope and the spacecraft structural dynamics. Wavefront residuals are then computed according to a model of the adaptive optics system that includes numerical propagation to simulate realistic images on the wavefront sensor and an analytical model of the temporal performance. An end-to-end numerical propagation model of ECLIPS is then used to estimate the residual starlight intensity distribution on the science detector. We show that the contrast performance depends strongly on the target star magnitude and advocate for the use of laser metrology to mitigate high temporal frequency wavefront errors and increase the mission yield.
Future space telescopes with coronagraph instruments will use a wavefront sensor (WFS) to measure and correct for phase errors and stabilize the stellar intensity in high-contrast images. The HabEx and LUVOIR mission concepts baseline a Zernike wavefront sensor (ZWFS), which uses Zernike’s phase contrast method to convert phase in the pupil into intensity at the WFS detector. In preparation for these potential future missions, we experimentally demonstrate a ZWFS in a coronagraph instrument on the Decadal Survey Testbed in the High Contrast Imaging Testbed facility at NASA’s Jet Propulsion Laboratory. We validate that the ZWFS can measure low- and mid-spatial frequency aberrations up to the control limit of the deformable mirror (DM), with surface height sensitivity as small as 1 pm, using a configuration similar to the HabEx and LUVOIR concepts. Furthermore, we demonstrate closed-loop control, resolving an individual DM actuator, with residuals consistent with theoretical models. In addition, we predict the expected performance of a ZWFS on future space telescopes using natural starlight from a variety of spectral types. The most challenging scenarios require ∼1 h of integration time to achieve picometer sensitivity. This timescale may be drastically reduced by using internal or external laser sources for sensing purposes. The experimental results and theoretical predictions presented here advance the WFS technology in the context of the next generation of space telescopes with coronagraph instruments.
Debris disks around nearby stars are tracers of the planet formation process, and they are a key element of our understanding of the formation and evolution of extrasolar planetary systems. With multi-color images of a significant number of disks, we can probe important questions: can we learn about planetary system evolution; what materials are the disks made of; and can they reveal the presence of planets? Most disks are known to exist only through their infrared flux excesses as measured by the Spitzer Space Telescope, and through images measured by Herschel. The brightest, most extended disks have been imaged with HST, and a few, such as Fomalhaut, can be observed using ground-based telescopes. But the number of good images is still very small, and there are none of disks with densities as low as the disk associated with the asteroid belt and Edgeworth Kuiper belt in our own Solar System.
Direct imaging of disks is a major observational challenge, demanding high angular resolution and extremely high dynamic range close to the parent star. The ultimate experiment requires a space-based platform, but demonstrating much of the needed technology, mitigating the technical risks of a space-based coronagraph, and performing valuable measurements of circumstellar debris disks, can be done from a high-altitude balloon platform. In this paper we present a balloon-borne telescope concept based on the Zodiac II design that could undertake compelling studies of a sample of debris disks.
Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are
analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will
measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements
will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary
systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks
made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition,
Zodiac II will observe hot, young exoplanets as targets of opportunity.
The Zodiac II instrument is a 1.1-m diameter SiC telescope and an imaging coronagraph on a gondola carried
by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visiblewavelength
bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images
of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights within
the United States followed by half-global flights in the Southern Hemisphere. These longer flights are required to
fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more
sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope
can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the
near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs,
deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope
for high-contrast exoplanet imaging.
Less than 20 years after the discovery of the first extrasolar planet, exoplanetology is rapidly growing with more than
one discovery every week on average since 2007. An important step in exoplanetology is the chemical characterization
of exoplanet atmospheres. It has recently been shown that molecular signatures of transiting exoplanets can be studied
from the ground. To advance this idea and prepare more ambitious missions such as THESIS, a dedicated spectrometer
named the New Mexico Tech Extrasolar Spectroscopic Survey Instrument (NESSI) is being built at New Mexico Tech
in collaboration with the NASA Jet Propulsion Laboratory. NESSI is a purpose-built multi-object spectrograph that
operates in the J, H, and K-bands with a resolution of R = 1000 in each, as well as a lower resolution of R = 250 across
the entire J/H/K region.
Direct detection of mature exoplanets is possible using a visible-wavelength telescope and coronagraph in the
stratosphere. We analyze two sources of dynamic wavefront perturbations: turbulence in the free atmosphere and locally
generated turbulence. We find that they are expected to have relatively small effects on the wavefront. We find that
neither source should limit observations at 10-9 contrast levels for planet-star separations of 0.5 arcsec. On this basis, we
expect that it is feasible to image and characterize several known radial-velocity exoplanets.
The development of widely tunable coherent frequency sources for application as local oscillators or simply as test equipment above 1 THz remains an impediment in receiver development and characterization. Photomixer sources have demonstrated sufficient power to pump SIS mixers to over 600 GHz and have demonstrated over 2.5 THz of bandwidth in a single device. First generation photomixer system solved the problem of frequency calibration, but failed to fully address the needed spectral purity required for heterodyne applications. A number of improved laser technologies are greatly simplifying the implementation and improving the spectral purity of photomixer systems, however a full system demonstration in the THz frequency range remains elusive. The current state of the art for photomixer based sources is explored in light of heterodyne local oscillator and coherent tests sources for antenna and component characterization at THz frequencies.
We developed a tunable, cavity-locked diode laser source at 850 nm for difference-frequency generation of coherent THz- waves. The difference frequency is synthesized by three fiber-coupled external-cavity diode lasers, where tow of the lasers are locked to adjacent modes of an ultra-stable Fabry-Perot cavity and the third laser is offset-phase- locked to the second cavity-locked laser using a tunable microwave oscillator. The first cavity-locked laser and the offset-locked laser produces the difference frequency, whose value is precisely determined by sum of integer multiple of free spectral range of the Fabry-Perot cavity and the offset frequency. The difference-frequency signal is amplified to 500 mW by the master oscillator power amplifier technique, simultaneous two-frequency injection-seeding with a single semiconductor optical amplifier. Here we demonstrate the difference-frequency generation of THz waves with the low- temperature-grown GaAs photomixers and its application to high-resolution spectroscopy of simple molecules. An absolute frequency calibration was carried out with an accuracy of approximately 10-7 using CO lines in the THz region.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.