Gate all around stacked nanosheet FET’s have emerged as the next technology to FinFET’s for beyond 7-nm scaling. With EUV technology integrated into manufacturing at 7nm, there is great interest to enable EUV direct print patterning for nanosheet technology in the FEOL. While sheet and gate pitches expected for the beyond 7nm node fall within the EUV direct print regime (>40nm), it is unclear if direct print solutions can meet device performance requirements at technology critical sheet widths and gate lengths. Here, we demonstrate electrical performance of nanosheet FET’s with 20 – 80 nm wide sheets with 40-150 nm pitch gates patterned with single expose EUV. We compare results against a benchmark double patterning process towards meeting variability, device and critical dimension targets. We also explore the limits of process and material knobs - resists, illuminations and etch chemistries with the specific goal of reducing LER/LWR and towards shrink for further scaling. Our results demonstrate crossover points between direct print EUV and double patterning processes for nanosheet technology and identify relevant design guidelines and focus areas to successfully enable EUV for the FEOL in nanosheets.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.