Diode-pumped solid-state lasers are gaining acceptance as the desired laser source for materials processing as well as a
host of new applications that are expanding rapidly. Because of this, the performance, stability and lifetime of the diode-pump
source face unprecedented scrutiny. Increasing the lifetime of the diode, while increasing power, remains a
primary focus of the industry. One lifetime limiting issue is that of a voltage potential in the water cooling channels
which can cause cooler degradation and lower efficiency over time. Studies have been carried out that explore different
cooling approaches based on passive schemes where insulation layers are present to shield the voltage from the water
channels. However, with the introduction of insulation layers, a reduction of the deployable power from that of
microchannel coolers is seen. This report explores the effects of passive cooling approaches on the power and
divergence of 1 cm AuSn/CuW mounted bars with fill factors ranging from 10% to 50%. It is shown that a 150 W array
can be realized on a passive cooler and multiplexed to give a 1600 W stack. Thermal modeling is presented along with
life-test data for passively cooled devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.