The photoreceptor (PR) – retinal pigment epithelium (RPE) – choriocapillaris (CC) complex is an extremely important group of layers in the outer retina. We demonstrate resolution of the CC vascular network across the macula, as well as the methodology to extract and quantify structural metrics from all three layers from averaged AO-OCT volumes. In diseased eyes, small changes in CC structure may portend the initiation of disease and therefore the investigation of CC structural changes may aid early disease diagnosis for many diseases, both prevalent and rare, that begin in the outer retina.
The spatial connectivity of neural circuits and the various activity patterns they exert is what forms the brain function. How these patterns link to a certain perception or a behavior is a key question in neuroscience. Recording the activity of neural circuits while manipulating arbitrary neurons leads to answering this question. That is why acquiring a fast and reliable method of stimulation and imaging a population of neurons at a single cell resolution is of great importance. Owing to the recent advancements in calcium imaging and optogenetics, tens to hundreds of neurons in a living system can be imaged and manipulated optically. We describe the adaptation of a multi-point optical method that can be used to address the specific challenges faced in the in-vivo study of neuronal networks in the cerebral cortex. One specific challenge in the cerebral cortex is that the information flows perpendicular to the surface. Therefore, addressing multiple points in a three dimensional space simultaneously is of great interest. Using a liquid crystal spatial light modulator, the wavefront of the input laser beam is modified to produce multiple focal points at different depths of the sample for true multipoint two-photon excitation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.