Investigating long-term fatal corrosion of turquoise lead-potassium historic glass beads, we have detected micro and nano crystallites of orthorhombic KSbOSiO4 (KSS) in glass. We have come to conclusion that KSS precipitates and their clusters give rise to internal glass corrosion. K and Sb being glass dopants form KSS crystallites during glass melt cooling; tensile strain arising in the glass matrix during cooling gives rise to glass cracking and eventually to its rupture and formation of heterogeneous grains. The strain-induced diffusion of impurities, resembling internal gettering in the Si technology, explains changes in glass color. We have also detected Pb2Fe0.5Sb1.5O6.5 nano crystallites in stable yellow lead glass beads. The number density and the sizes of these crystallites are much less than those of the KSS crystallites in turquoise lead-potassium glass, they do not form large clusters; internal cracks also has not been observed in this glass. This may explain the stability of yellow lead glass. The study may be useful for predicting long-term stability of technical glasses as well as for synthesis of nano-KSS/glass composites.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.